Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review
The development of tissue engineering has led to new strategies for mitigating clinical problems; however, the design of the tissue engineering materials remains a challenge. The limited sources and inadequate function, potential risk of microbial or pathogen contamination, and high cost of cell expansion impair the efficacy and limit the application of exogenous cells in tissue engineering. However, endogenous cells in native tissues have been reported to be capable of spontaneous repair of the damaged tissue. These cells exhibit remarkable plasticity, and thus can differentiate or be reprogrammed to alter their phenotype and function after stimulation. After a comprehensive review, we found that the plasticity of these cells plays a major role in establishing the cell source in the mechanism involved in tissue regeneration. Tissue engineering materials that focus on assisting and promoting the natural self-repair function of endogenous cells may break through the limitations of exogenous seed cells and further expand the applications of tissue engineering materials in tissue repair. This review discusses the effects of endogenous cells, especially stem cells, on injured tissue repairing, and highlights the potential utilisation of endogenous repair in orthopaedic biomaterial constructions for bone, cartilage, and intervertebral disc regeneration.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. National Science Foundation. The emergence of tissue engineering as a research field. http://www.nsf.gov/pubs/2004/nsf0450/emergence.htm. Accessed May 15, 2021.
2. Langer, R.; Vacanti, J. P. Tissue engineering. Science. 1993, 260, 920-926.
3. Jahromi, M.; Razavi, S.; Bakhtiari, A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med. 2019, 13, 2077-2100.
4. Qasim, M.; Chae, D. S.; Lee, N. Y. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 2019, 14, 4333-4351.
5. Frueh, F. S.; Menger, M. D.; Lindenblatt, N.; Giovanoli, P.; Laschke, M. W. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol. 2017, 37, 613-625.
6. Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Aghamollaei, H. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol. 2019, 126, 620-632.
7. Berthiaume, F.; Maguire, T. J.; Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011, 2, 403-430.
8. Song, H. G.; Rumma, R. T.; Ozaki, C. K.; Edelman, E. R.; Chen, C. S. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018, 22, 340-354.
9. Kim, H. D.; Amirthalingam, S.; Kim, S. L.; Lee, S. S.; Rangasamy, J.; Hwang, N. S. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater. 2017, 6, 1700612.
10. Katagiri, W.; Watanabe, J.; Toyama, N.; Osugi, M.; Sakaguchi, K.; Hibi, H. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant Dent. 2017, 26, 607-612.
11. Falanga, V.; Iwamoto, S.; Chartier, M.; Yufit, T.; Butmarc, J.; Kouttab, N.; Shrayer, D.; Carson, P. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007, 13, 1299-1312.
12. Yoshikawa, T.; Ueda, Y.; Miyazaki, K.; Koizumi, M.; Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976). 2010, 35, E475-480.
13. Mendonça, M. V.; Larocca, T. F.; de Freitas Souza, B. S.; Villarreal, C. F.; Silva, L. F.; Matos, A. C.; Novaes, M. A.; Bahia, C. M.; de Oliveira Melo Martinez, A. C.; Kaneto, C. M.; Furtado, S. B.; Sampaio, G. P.; Soares, M. B.; dos Santos, R. R. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. 2014, 5, 126.
14. Al-Najar, M.; Khalil, H.; Al-Ajlouni, J.; Al-Antary, E.; Hamdan, M.; Rahmeh, R.; Alhattab, D.; Samara, O.; Yasin, M.; Abdullah, A. A.; Al-Jabbari, E.; Hmaid, D.; Jafar, H.; Awidi, A. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J Orthop Surg Res. 2017, 12, 190.
15. Pigott, J. H.; Ishihara, A.; Wellman, M. L.; Russell, D. S.; Bertone, A. L. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol. 2013, 156, 99-106.
16. Pas, H. I.; Winters, M.; Haisma, H. J.; Koenis, M. J.; Tol, J. L.; Moen, M. H. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med. 2017, 51, 1125-1133.
17. Jin, J. Stem cell treatments. JAMA. 2017, 317, 330.
18. Sackett, S. D.; Brown, M. E.; Tremmel, D. M.; Ellis, T.; Burlingham, W. J.; Odorico, J. S. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation. Transplant Rev (Orlando). 2016, 30, 61-70.
19. Wells, J. M.; Watt, F. M. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature. 2018, 557, 322-328.
20. Du, S. H.; Feng, Y. Z.; Huang, Y. X.; Guo, X. S.; Xia, D. D. Comparison of pediatric forearm fracture fixation between single- and double-elastic stable intramedullary nailing. Am J Ther. 2016, 23, e730-736.
21. Majidinia, M.; Sadeghpour, A.; Yousefi, B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018, 233, 2937-2948.
22. Dekoninck, S.; Blanpain, C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019, 21, 18-24.
23. Stenudd, M.; Sabelström, H.; Frisén, J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015, 72, 235-237.
24. Nocera, G.; Jacob, C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020, 77, 3977-3989.
25. Li, W.; Li, L.; Hui, L. Cell plasticity in liver regeneration. Trends Cell Biol. 2020, 30, 329-338.
26. Li, C. J.; Cheng, P.; Liang, M. K.; Chen, Y. S.; Lu, Q.; Wang, J. Y.; Xia, Z. Y.; Zhou, H. D.; Cao, X.; Xie, H.; Liao, E. Y.; Luo, X. H. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest. 2015, 125, 1509-1522.
27. Adachi, J. D.; Lyles, K. W.; Colón-Emeric, C. S.; Boonen, S.; Pieper, C. F.; Mautalen, C.; Hyldstrup, L.; Recknor, C.; Nordsletten, L.; Moore, K. A.; Bucci-Rechtweg, C.; Su, G.; Eriksen, E. F.; Magaziner, J. S. Zoledronic acid results in better health-related quality of life following hip fracture: the HORIZON-recurrent fracture trial. Osteoporos Int. 2011, 22, 2539-2549.
28. Kalbasi Anaraki, P.; Patecki, M.; Tkachuk, S.; Kiyan, Y.; Haller, H.; Dumler, I. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-κB pathway in osteoclasts. J Bone Miner Res. 2015, 30, 379-388.
29. Sinder, B. P.; Pettit, A. R.; McCauley, L. K. Macrophages: their emerging roles in bone. J Bone Miner Res. 2015, 30, 2140-2149.
30. Alippe, Y.; Wang, C.; Ricci, B.; Xiao, J.; Qu, C.; Zou, W.; Novack, D. V.; Abu-Amer, Y.; Civitelli, R.; Mbalaviele, G. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep. 2017, 7, 6630.
31. Omari, S.; Makareeva, E.; Roberts-Pilgrim, A.; Mirigian, L.; Jarnik, M.; Ott, C.; Lippincott-Schwartz, J.; Leikin, S. Noncanonical autophagy at ER exit sites regulates procollagen turnover. Proc Natl Acad Sci U S A. 2018, 115, E10099-E10108.
32. Odkhuu, E.; Koide, N.; Haque, A.; Tsolmongyn, B.; Naiki, Y.; Hashimoto, S.; Komatsu, T.; Yoshida, T.; Yokochi, T. Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ). Immunol Lett. 2012, 142, 34-40.
33. Roohani-Esfahani, S. I.; No, Y. J.; Lu, Z.; Ng, P. Y.; Chen, Y.; Shi, J.; Pavlos, N. J.; Zreiqat, H. A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration. Biomed Mater. 2016, 11, 035018.
34. Atanga, E.; Dolder, S.; Dauwalder, T.; Wetterwald, A.; Hofstetter, W. TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF. Bone. 2011, 49, 1090-1100.
35. Ozaki, A.; Tsunoda, M.; Kinoshita, S.; Saura, R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci. 2000, 5, 64-70.
36. Marcucci, G.; Beltrami, G.; Tamburini, A.; Body, J. J.; Confavreux, C. B.; Hadji, P.; Holzer, G.; Kendler, D.; Napoli, N.; Pierroz, D. D.; Rizzoli, R.; Brandi, M. L. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors. Ann Oncol. 2019, 30, 908-920.
37. Alman, B. A.; Kelley, S. P.; Nam, D. Heal thyself: using endogenous regeneration to repair bone. Tissue Eng Part B Rev. 2011, 17, 431-436.
38. Zhang, Y.; Hao, Z.; Wang, P.; Xia, Y.; Wu, J.; Xia, D.; Fang, S.; Xu, S. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif. 2019, 52, e12570.
39. Fan, Y.; Hanai, J. I.; Le, P. T.; Bi, R.; Maridas, D.; DeMambro, V.; Figueroa, C. A.; Kir, S.; Zhou, X.; Mannstadt, M.; Baron, R.; Bronson, R. T.; Horowitz, M. C.; Wu, J. Y.; Bilezikian, J. P.; Dempster, D. W.; Rosen, C. J.; Lanske, B. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017, 25, 661-672.
40. Kajimura, D.; Lee, H. W.; Riley, K. J.; Arteaga-Solis, E.; Ferron, M.; Zhou, B.; Clarke, C. J.; Hannun, Y. A.; DePinho, R. A.; Guo, X. E.; Mann, J. J.; Karsenty, G. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab. 2013, 17, 901-915.
41. Funamoto, T.; Sekimoto, T.; Murakami, T.; Kurogi, S.; Imaizumi, K.; Chosa, E. Roles of the endoplasmic reticulum stress transducer OASIS in fracture healing. Bone. 2011, 49, 724-732.
42. Wang, J.; Yang, J.; Cheng, X.; Xiao, R.; Zhao, Y.; Xu, H.; Zhu, Y.; Yan, Z.; Ommati, M. M.; Manthari, R. K.; Wang, J. Calcium alleviates fluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Agric Food Chem. 2019, 67, 10832-10843.
43. Park, J. K.; Jang, H.; Hwang, S.; Kim, E. J.; Kim, D. E.; Oh, K. B.; Kwon, D. J.; Koh, J. T.; Kimura, K.; Inoue, H.; Jang, W. G.; Lee, J. W. ER stress-inducible ATF3 suppresses BMP2-induced ALP expression and activation in MC3T3-E1 cells. Biochem Biophys Res Commun. 2014, 443, 333-338.
44. Dai, P.; Mao, Y.; Sun, X.; Li, X.; Muhammad, I.; Gu, W.; Zhang, D.; Zhou, Y.; Ni, Z.; Ma, J.; Huang, S. Attenuation of oxidative stress-induced osteoblast apoptosis by curcumin is associated with preservation of mitochondrial functions and increased Akt-GSK3β signaling. Cell Physiol Biochem. 2017, 41, 661-677.
45. Dimitriou, R.; Tsiridis, E.; Giannoudis, P. V. Current concepts of molecular aspects of bone healing. Injury. 2005, 36, 1392-1404.
46. Li, L.; Yang, S.; Xu, L.; Li, Y.; Fu, Y.; Zhang, H.; Song, J. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin. Acta Biomater. 2019, 96, 674-685.
47. Chen, X. J.; Shen, Y. S.; He, M. C.; Yang, F.; Yang, P.; Pang, F. X.; He, W.; Cao, Y. M.; Wei, Q. S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2019, 112, 108746.
48. zur Nieden, N. I.; Price, F. D.; Davis, L. A.; Everitt, R. E.; Rancourt, D. E. Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol Endocrinol. 2007, 21, 674-685.
49. Yang, M.; Li, C. J.; Sun, X.; Guo, Q.; Xiao, Y.; Su, T.; Tu, M. L.; Peng, H.; Lu, Q.; Liu, Q.; He, H. B.; Jiang, T. J.; Lei, M. X.; Wan, M.; Cao, X.; Luo, X. H. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun. 2017, 8, 16003.
50. Fasolino, I.; Raucci, M. G.; Soriente, A.; Demitri, C.; Madaghiele, M.; Sannino, A.; Ambrosio, L. Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019, 105, 110046.
51. Wang, Y.; Cao, L.; Liu, X. Ghrelin alleviates endoplasmic reticulum stress and inflammation-mediated reproductive dysfunction induced by stress. J Assist Reprod Genet. 2019, 36, 2357-2366.
52. Ohashi, E.; Kohno, K.; Arai, N.; Harashima, A.; Ariyasu, T.; Ushio, S. Adenosine N1-oxide exerts anti-inflammatory effects through the PI3K/Akt/GSK-3β signaling pathway and promotes osteogenic and adipocyte differentiation. Biol Pharm Bull. 2019, 42, 968-976.
53. He, Y. Q.; Yang, H.; Shen, Y.; Zhang, J. H.; Zhang, Z. G.; Liu, L. L.; Song, H. T.; Lin, B.; Hsu, H. Y.; Qin, L. P.; Han, T.; Xin, H. L.; Zhang, Q. Y. Monotropein attenuates ovariectomy and LPS-induced bone loss in mice and decreases inflammatory impairment on osteoblast through blocking activation of NF-κB pathway. Chem Biol Interact. 2018, 291, 128-136.
54. Xu, L.; Zhang, L.; Wang, Z.; Li, C.; Li, S.; Li, L.; Fan, Q.; Zheng, L. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int. 2018, 103, 400-410.
55. Peng, Y.; Huang, D.; Li, J.; Liu, S.; Qing, X.; Shao, Z. Genipin-crosslinked decellularized annulus fibrosus hydrogels induces tissue-specific differentiation of bone mesenchymal stem cells and intervertebral disc regeneration. J Tissue Eng Regen Med. 2020, 14, 497-509.
56. Duan, H.; Song, W.; Zhao, W.; Gao, Y.; Yang, Z.; Li, X. Endogenous neurogenesis in adult mammals after spinal cord injury. Sci China Life Sci. 2016, 59, 1313-1318.
57. Salih, E.; Wang, J.; Mah, J.; Fluckiger, R. Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem J. 2002, 364, 465-474.
58. Wildemann, B.; Kadow-Romacker, A.; Haas, N. P.; Schmidmaier, G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007, 81, 437-442.
59. Holt, D. J.; Grainger, D. W. Demineralized bone matrix as a vehicle for delivering endogenous and exogenous therapeutics in bone repair. Adv Drug Deliv Rev. 2012, 64, 1123-1128.
60. Pietrzak, W. S.; Woodell-May, J.; McDonald, N. Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg. 2006, 17, 84-90.
61. Hu, Q.; Liu, M.; Chen, G.; Xu, Z.; Lv, Y. Demineralized bone scaffolds with tunable matrix stiffness for efficient bone integration. ACS Appl Mater Interfaces. 2018, 10, 27669-27680.
62. Chen, G.; Dong, C.; Yang, L.; Lv, Y. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces. 2015, 7, 15790-15802.
63. Ranly, D. M.; McMillan, J.; Keller, T.; Lohmann, C. H.; Meunch, T.; Cochran, D. L.; Schwartz, Z.; Boyan, B. D. Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice. J Bone Joint Surg Am. 2005, 87, 2052-2064.
64. Peel, S. A.; Hu, Z. M.; Clokie, C. M. In search of the ideal bone morphogenetic protein delivery system: in vitro studies on demineralized bone matrix, purified, and recombinant bone morphogenetic protein. J Craniofac Surg. 2003, 14, 284-291.
65. Gombotz, W. R.; Pankey, S. C.; Bouchard, L. S.; Ranchalis, J.; Puolakkainen, P. Controlled release of TGF-beta 1 from a biodegradable matrix for bone regeneration. J Biomater Sci Polym Ed. 1993, 5, 49-63.
66. Moxham, J. P.; Kibblewhite, D. J.; Bruce, A. G.; Rigley, T.; Gillespy, T. 3rd; Lane, J. Transforming growth factor-beta 1 in a guanidine-extracted demineralized bone matrix carrier rapidly closes a rabbit critical calvarial defect. J Otolaryngol. 1996, 25, 82-87.
67. Del Rosario, C.; Rodríguez-Evora, M.; Reyes, R.; González-Orive, A.; Hernández-Creus, A.; Shakesheff, K. M.; White, L. J.; Delgado, A.; Evora, C. Evaluation of nanostructure and microstructure of bone regenerated by BMP-2-porous scaffolds. J Biomed Mater Res A. 2015, 103, 2998-3011.
68. Chen, B.; Lin, H.; Wang, J.; Zhao, Y.; Wang, B.; Zhao, W.; Sun, W.; Dai, J. Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials. 2007, 28, 1027-1035.
69. Ho, S. S.; Murphy, K. C.; Binder, B. Y.; Vissers, C. B.; Leach, J. K. Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl Med. 2016, 5, 773-781.
70. Lu, Z.; Jiang, X.; Chen, M.; Feng, L.; Kang, Y. J. An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication. 2019, 11, 045012.
71. Hosseinzadeh, A.; Kamrava, S. K.; Joghataei, M. T.; Darabi, R.; Shakeri-Zadeh, A.; Shahriari, M.; Reiter, R. J.; Ghaznavi, H.; Mehrzadi, S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 2016, 61, 411-425.
72. Lai, M.; Jin, Z.; Tang, Q.; Lu, M. Sustained release of melatonin from TiO(2) nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro. J Biomater Sci Polym Ed. 2017, 28, 1651-1664.
73. Hoemann, C. D.; Chen, G.; Marchand, C.; Tran-Khanh, N.; Thibault, M.; Chevrier, A.; Sun, J.; Shive, M. S.; Fernandes, M. J.; Poubelle, P. E.; Centola, M.; El-Gabalawy, H. Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages. Am J Sports Med. 2010, 38, 1845-1856.
74. Deng, M.; Tan, J.; Hu, C.; Hou, T.; Peng, W.; Liu, J.; Yu, B.; Dai, Q.; Zhou, J.; Yang, Y.; Dong, R.; Ruan, C.; Dong, S.; Xu, J. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-β-induced protein. Adv Healthc Mater. 2020, 9, e2000353.
75. Knudson, C. B.; Knudson, W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001, 12, 69-78.
76. Pacifici, M.; Koyama, E.; Iwamoto, M.; Gentili, C. Development of articular cartilage: what do we know about it and how may it occur? Connect Tissue Res. 2000, 41, 175-184.
77. Huang, C. C.; Chiou, C. H.; Liu, S. C.; Hu, S. L.; Su, C. M.; Tsai, C. H.; Tang, C. H. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res. 2019, 66, e12560.
78. Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J. P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011, 7, 33-42.
79. Liu, Y.; Zou, R.; Wang, Z.; Wen, C.; Zhang, F.; Lin, F. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J. 2018, 475, 3629-3638.
80. Barbero, A.; Ploegert, S.; Heberer, M.; Martin, I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum. 2003, 48, 1315-1325.
81. Alsalameh, S.; Amin, R.; Gemba, T.; Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004, 50, 1522-1532.
82. Hiraoka, K.; Grogan, S.; Olee, T.; Lotz, M. Mesenchymal progenitor cells in adult human articular cartilage. Biorh. 2006, 43, 447-454.
83. Seol, D.; McCabe, D. J.; Choe, H.; Zheng, H.; Yu, Y.; Jang, K.; Walter, M. W.; Lehman, A. D.; Ding, L.; Buckwalter, J. A.; Martin, J. A. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum. 2012, 64, 3626-3637.
84. McCarthy, H. E.; Bara, J. J.; Brakspear, K.; Singhrao, S. K.; Archer, C. W. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J. 2012, 192, 345-351.
85. Ozbey, O.; Sahin, Z.; Acar, N.; Ustunel, I. Distribution of CD105 and CD166 positive cells in the proximal epiphysis of developing rat humerus. Histol Histopathol. 2010, 25, 1437-1445.
86. Fickert, S.; Fiedler, J.; Brenner, R. E. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther. 2004, 6, R422-432.
87. Churchill, J. L.; Krych, A. J.; Lemos, M. J.; Redd, M.; Bonner, K. F. A case series of successful repair of articular cartilage fragments in the knee. Am J Sports Med. 2019, 47, 2589-2595.
88. García-Arnandis, I.; Guillén, M. I.; Castejón, M. A.; Gomar, F.; Alcaraz, M. J. Haem oxygenase-1 down-regulates high mobility group box 1 and matrix metalloproteinases in osteoarthritic synoviocytes. Rheumatology (Oxford). 2010, 49, 854-861.
89. Joos, H.; Wildner, A.; Hogrefe, C.; Reichel, H.; Brenner, R. E. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. Arthritis Res Ther. 2013, 15, R119.
90. Mishima, Y.; Lotz, M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res. 2008, 26, 1407-1412.
91. Schnabel, M.; Marlovits, S.; Eckhoff, G.; Fichtel, I.; Gotzen, L.; Vécsei, V.; Schlegel, J. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage. 2002, 10, 62-70.
92. Miller, R. E.; Scanzello, C. R.; Malfait, A. M. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin Immunopathol. 2019, 41, 583-594.
93. Mills, C. D.; Kincaid, K.; Alt, J. M.; Heilman, M. J.; Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000, 164, 6166-6173.
94. Kraus, V. B.; McDaniel, G.; Huebner, J. L.; Stabler, T. V.; Pieper, C. F.; Shipes, S. W.; Petry, N. A.; Low, P. S.; Shen, J.; McNearney, T. A.; Mitchell, P. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage. 2016, 24, 1613-1621.
95. Scanzello, C. R.; Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012, 51, 249-257.
96. Wang, T.; He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018, 44, 38-50.
97. Li, Y. S.; Luo, W.; Zhu, S. A.; Lei, G. H. T cells in osteoarthritis: alterations and beyond. Front Immunol. 2017, 8, 356.
98. Glyn-Jones, S.; Palmer, A. J.; Agricola, R.; Price, A. J.; Vincent, T. L.; Weinans, H.; Carr, A. J. Osteoarthritis. Lancet. 2015, 386, 376-387.
99. Imada, K.; Oka, H.; Kawasaki, D.; Miura, N.; Sato, T.; Ito, A. Anti-arthritic action mechanisms of natural chondroitin sulfate in human articular chondrocytes and synovial fibroblasts. Biol Pharm Bull. 2010, 33, 410-414.
100. Cheleschi, S.; Fioravanti, A.; De Palma, A.; Corallo, C.; Franci, D.; Volpi, N.; Bedogni, G.; Giannotti, S.; Giordano, N. Methylsulfonylmethane and mobilee prevent negative effect of IL-1β in human chondrocyte cultures via NF-κB signaling pathway. Int Immunopharmacol. 2018, 65, 129-139.
101. Zhuang, C.; Wang, Y.; Zhang, Y.; Xu, N. Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from angelica sinensis. Int J Biol Macromol. 2018, 115, 281-286.
102. Ertürk, C.; Altay, M. A.; Selek, S.; Koçyiğit, A. Paraoxonase-1 activity and oxidative status in patients with knee osteoarthritis and their relationship with radiological and clinical parameters. Scand J Clin Lab Invest. 2012, 72, 433-439.
103. Courties, A.; Gualillo, O.; Berenbaum, F.; Sellam, J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis Cartilage. 2015, 23, 1955-1965.
104. Lepetsos, P.; Papavassiliou, K. A.; Papavassiliou, A. G. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med. 2019, 132, 90-100.
105. Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S. A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018, 233, 6425-6440.
106. Laskin, D. L.; Sunil, V. R.; Gardner, C. R.; Laskin, J. D. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 2011, 51, 267-288.
107. Ackerman, J. E.; Geary, M. B.; Orner, C. A.; Bawany, F.; Loiselle, A. E. Obesity/Type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response. PLoS One. 2017, 12, e0181127.
108. Zhang, S.; Chuah, S. J.; Lai, R. C.; Hui, J. H. P.; Lim, S. K.; Toh, W. S. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018, 156, 16-27.
109. Dai, M.; Sui, B.; Xue, Y.; Liu, X.; Sun, J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials. 2018, 180, 91-103.
110. Chu, J.; Yan, B.; Zhang, J.; Peng, L.; Ao, X.; Zheng, Z.; Jiang, T.; Zhang, Z. Casticin attenuates osteoarthritis-related cartilage degeneration by inhibiting the ROS-mediated NF-κB signaling pathway in vitro and in vivo. Inflammation. 2020, 43, 810-820.
111. Hu, S. L.; Wang, K.; Shi, Y. F.; Shao, Z. X.; Zhang, C. X.; Sheng, K. W.; Ge, Z. D.; Chen, J. X.; Wang, X. Y. Downregulating Akt/NF-κB signaling and its antioxidant activity with Loureirin A for alleviating the progression of osteoarthritis: In vitro and vivo studies. Int Immunopharmacol. 2020, 78, 105953.
112. Gleghorn, J. P.; Jones, A. R.; Flannery, C. R.; Bonassar, L. J. Boundary mode lubrication of articular cartilage by recombinant human lubricin. J Orthop Res. 2009, 27, 771-777.
113. Flannery, C. R.; Zollner, R.; Corcoran, C.; Jones, A. R.; Root, A.; Rivera-Bermúdez, M. A.; Blanchet, T.; Gleghorn, J. P.; Bonassar, L. J.; Bendele, A. M.; Morris, E. A.; Glasson, S. S. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 2009, 60, 840-847.
114. Sophia Fox, A. J.; Bedi, A.; Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009, 1, 461-468.
115. Chuah, Y. J.; Peck, Y.; Lau, J. E.; Hee, H. T.; Wang, D. A. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci. 2017, 5, 613-631.
116. Shields, K. J.; Beckman, M. J.; Bowlin, G. L.; Wayne, J. S. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 2004, 10, 1510-1517.
117. Liu, S.; Wu, J.; Liu, X.; Chen, D.; Bowlin, G. L.; Cao, L.; Lu, J.; Li, F.; Mo, X.; Fan, C. Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold. J Biomed Mater Res A. 2015, 103, 581-592.
118. Dong, C.; Lv, Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers (Basel). 2016, 8, 42.
119. Mohan, N.; Mohanan, P. V.; Sabareeswaran, A.; Nair, P. Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol. 2017, 104, 1936-1945.
120. Pulkkinen, H. J.; Tiitu, V.; Valonen, P.; Jurvelin, J. S.; Lammi, M. J.; Kiviranta, I. Engineering of cartilage in recombinant human type II collagen gel in nude mouse model in vivo. Osteoarthritis Cartilage. 2010, 18, 1077-1087.
121. Marquass, B.; Somerson, J. S.; Hepp, P.; Aigner, T.; Schwan, S.; Bader, A.; Josten, C.; Zscharnack, M.; Schulz, R. M. A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J Orthop Res. 2010, 28, 1586-1599.
122. Leone, G.; Volpato, M. D.; Nelli, N.; Lamponi, S.; Boanini, E.; Bigi, A.; Magnani, A. Continuous multilayered composite hydrogel as osteochondral substitute. J Biomed Mater Res A. 2015, 103, 2521-2530.
123. Mallick, S. P.; Singh, B. N.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/poly(l-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. Int J Biol Macromol. 2018, 112, 909-920.
124. Duan, P.; Pan, Z.; Cao, L.; He, Y.; Wang, H.; Qu, Z.; Dong, J.; Ding, J. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J Biomed Mater Res A. 2014, 102, 180-192.
125. Yang, J.; Zhang, Y. S.; Yue, K.; Khademhosseini, A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017, 57, 1-25.
126. Peng, Y.; Qing, X.; Lin, H.; Huang, D.; Li, J.; Tian, S.; Liu, S.; Lv, X.; Ma, K.; Li, R.; Rao, Z.; Bai, Y.; Chen, S.; Lei, M.; Quan, D.; Shao, Z. Decellularized disc hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact Mater. 2021, 6, 3541-3556.
127. Antons, J.; Marascio, M. G.; Aeberhard, P.; Weissenberger, G.; Hirt-Burri, N.; Applegate, L. A.; Bourban, P. E.; Pioletti, D. P. Decellularised tissues obtained by a CO(2)-philic detergent and supercritical CO(2). Eur Cell Mater. 2018, 36, 81-95.
128. Sun, Y.; Yan, L.; Chen, S.; Pei, M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018, 74, 56-73.
129. Pati, F.; Jang, J.; Ha, D. H.; Won Kim, S.; Rhie, J. W.; Shim, J. H.; Kim, D. H.; Cho, D. W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014, 5, 3935.
130. Sutherland, A. J.; Beck, E. C.; Dennis, S. C.; Converse, G. L.; Hopkins, R. A.; Berkland, C. J.; Detamore, M. S. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One. 2015, 10, e0121966.
131. Almeida, H. V.; Eswaramoorthy, R.; Cunniffe, G. M.; Buckley, C. T.; O’Brien, F. J.; Kelly, D. J. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater. 2016, 36, 55-62.
132. Shintani, N.; Hunziker, E. B. Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis Rheum. 2007, 56, 1869-1879.
133. Holland, T. A.; Bodde, E. W.; Cuijpers, V. M.; Baggett, L. S.; Tabata, Y.; Mikos, A. G.; Jansen, J. A. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage. 2007, 15, 187-197.
134. Patil, A. S.; Sable, R. B.; Kothari, R. M. Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol. 2012, 227, 1796-1804.
135. Fischer, J.; Knoch, N.; Sims, T.; Rosshirt, N.; Richter, W. Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis. J Cell Physiol. 2018, 233, 8962-8970.
136. Boushell, M. K.; Mosher, C. Z.; Suri, G. K.; Doty, S. B.; Strauss, E. J.; Hunziker, E. B.; Lu, H. H. Polymeric mesh and insulin-like growth factor 1 delivery enhance cell homing and graft-cartilage integration. Ann N Y Acad Sci. 2019, 1442, 138-152.
137. Lacci, K. M.; Dardik, A. Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med. 2010, 83, 1-9.
138. Lindeboom, J. A.; Mathura, K. R.; Aartman, I. H.; Kroon, F. H.; Milstein, D. M.; Ince, C. Influence of the application of platelet-enriched plasma in oral mucosal wound healing. Clin Oral Implants Res. 2007, 18, 133-139.
139. Barbon, S.; Stocco, E.; Macchi, V.; Contran, M.; Grandi, F.; Borean, A.; Parnigotto, P. P.; Porzionato, A.; De Caro, R. Platelet-rich fibrin scaffolds for cartilage and tendon regenerative medicine: from bench to bedside. Int J Mol Sci. 2019, 20, 1701.
140. Chang, N. J.; Erdenekhuyag, Y.; Chou, P. H.; Chu, C. J.; Lin, C. C.; Shie, M. Y. Therapeutic effects of the addition of platelet-rich plasma to bioimplants and early rehabilitation exercise on articular cartilage repair. Am J Sports Med. 2018, 46, 2232-2241.
141. Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin Immunol. 2008, 20, 86-100.
142. Vasconcelos, D. M.; Gonçalves, R. M.; Almeida, C. R.; Pereira, I. O.; Oliveira, M. I.; Neves, N.; Silva, A. M.; Ribeiro, A. C.; Cunha, C.; Almeida, A. R.; Ribeiro, C. C.; Gil, A. M.; Seebach, E.; Kynast, K. L.; Richter, W.; Lamghari, M.; Santos, S. G.; Barbosa, M. A. Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration. Biomaterials. 2016, 111, 163-178.
143. Revati, R.; Abdul Majid, M. S.; Ridzuan, M. J. M.; Normahira, M.; Mohd Nasir, N. F.; Rahman, Y. M.; Gibson, A. G. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater Sci Eng C Mater Biol Appl. 2017, 75, 752-759.
144. Harrington, S.; Williams, J.; Rawal, S.; Ramachandran, K.; Stehno-Bittel, L. Hyaluronic acid/collagen hydrogel as an alternative to alginate for long-term immunoprotected islet transplantation. Tissue Eng Part A. 2017, 23, 1088-1099.
145. Lu, H. T.; Chang, W. T.; Tsai, M. L.; Chen, C. H.; Chen, W. Y.; Mi, F. L. Development of injectable fucoidan and biological macromolecules hybrid hydrogels for intra-articular delivery of platelet-rich plasma. Mar Drugs. 2019, 17, 236.
146. Zhao, Y.; Wei, C.; Chen, X.; Liu, J.; Yu, Q.; Liu, Y.; Liu, J. Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl Mater Interfaces. 2019, 11, 11587-11601.
147. Alini, M.; Eisenstein, S. M.; Ito, K.; Little, C.; Kettler, A. A.; Masuda, K.; Melrose, J.; Ralphs, J.; Stokes, I.; Wilke, H. J. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008, 17, 2-19.
148. Daly, C.; Ghosh, P.; Jenkin, G.; Oehme, D.; Goldschlager, T. A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic. Biomed Res Int. 2016, 2016, 5952165.
149. Ao, X.; Wang, L.; Shao, Y.; Chen, X.; Zhang, J.; Chu, J.; Jiang, T.; Zhang, Z.; Huang, M. Development and characterization of a novel bipedal standing mouse model of intervertebral disc and facet joint degeneration. Clin Orthop Relat Res. 2019, 477, 1492-1504.
150. Walter, B. A.; Korecki, C. L.; Purmessur, D.; Roughley, P. J.; Michalek, A. J.; Iatridis, J. C. Complex loading affects intervertebral disc mechanics and biology. Osteoarthritis Cartilage. 2011, 19, 1011-1018.
151. Hartman, R.; Patil, P.; Tisherman, R.; St Croix, C.; Niedernhofer, L. J.; Robbins, P. D.; Ambrosio, F.; Van Houten, B.; Sowa, G.; Vo, N. Age-dependent changes in intervertebral disc cell mitochondria and bioenergetics. Eur Cell Mater. 2018, 36, 171-183.
152. Lyu, F. J.; Cheung, K. M.; Zheng, Z.; Wang, H.; Sakai, D.; Leung, V. Y. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol. 2019, 15, 102-112.
153. Henriksson, H.; Thornemo, M.; Karlsson, C.; Hägg, O.; Junevik, K.; Lindahl, A.; Brisby, H. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976). 2009, 34, 2278-2287.
154. Henriksson, H. B.; Svala, E.; Skioldebrand, E.; Lindahl, A.; Brisby, H. Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila Pa 1976). 2012, 37, 722-732.
155. Sasaki, N.; Henriksson, H. B.; Runesson, E.; Larsson, K.; Sekiguchi, M.; Kikuchi, S.; Konno, S.; Rydevik, B.; Brisby, H. Physical exercise affects cell proliferation in lumbar intervertebral disc regions in rats. Spine (Phila Pa 1976). 2012, 37, 1440-1447.
156. Shi, R.; Wang, F.; Hong, X.; Wang, Y. T.; Bao, J. P.; Cai, F.; Wu, X. T. The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats. Eur Spine J. 2015, 24, 2411-2424.
157. Grunhagen, T.; Shirazi-Adl, A.; Fairbank, J. C.; Urban, J. P. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am. 2011, 42, 465-477, vii.
158. Holm, S.; Maroudas, A.; Urban, J. P.; Selstam, G.; Nachemson, A. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res. 1981, 8, 101-119.
159. Risbud, M. V.; Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014, 10, 44-56.
160. Li, Z.; Chen, S.; Ma, K.; Lv, X.; Lin, H.; Hu, B.; He, R.; Shao, Z. CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress. Life Sci. 2018, 205, 26-37.
161. Chen, S.; Deng, X.; Ma, K.; Zhao, L.; Huang, D.; Li, Z.; Shao, Z. Icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells. Oxid Med Cell Longev. 2018, 2018, 3459612.
162. Patil, P.; Falabella, M.; Saeed, A.; Lee, D.; Kaufman, B.; Shiva, S.; Croix, C. S.; Van Houten, B.; Niedernhofer, L. J.; Robbins, P. D.; Lee, J.; Gwendolyn, S.; Vo, N. V. Oxidative stress-induced senescence markedly increases disc cell bioenergetics. Mech Ageing Dev. 2019, 180, 97-106.
163. Childs, B. G.; Gluscevic, M.; Baker, D. J.; Laberge, R. M.; Marquess, D.; Dananberg, J.; van Deursen, J. M. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017, 16, 718-735.
164. Huang, D.; Peng, Y.; Li, Z.; Chen, S.; Deng, X.; Shao, Z.; Ma, K. Compression-induced senescence of nucleus pulposus cells by promoting mitophagy activation via the PINK1/PARKIN pathway. J Cell Mol Med. 2020, 24, 5850-5864.
165. Chen, D.; Xia, D.; Pan, Z.; Xu, D.; Zhou, Y.; Wu, Y.; Cai, N.; Tang, Q.; Wang, C.; Yan, M.; Zhang, J. J.; Zhou, K.; Wang, Q.; Feng, Y.; Wang, X.; Xu, H.; Zhang, X.; Tian, N. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis. 2016, 7, e2441.
166. Xia, C.; Zeng, Z.; Fang, B.; Tao, M.; Gu, C.; Zheng, L.; Wang, Y.; Shi, Y.; Fang, C.; Mei, S.; Chen, Q.; Zhao, J.; Lin, X.; Fan, S.; Jin, Y.; Chen, P. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med. 2019, 143, 1-15.
167. Nakamichi, R.; Ito, Y.; Inui, M.; Onizuka, N.; Kayama, T.; Kataoka, K.; Suzuki, H.; Mori, M.; Inagawa, M.; Ichinose, S.; Lotz, M. K.; Sakai, D.; Masuda, K.; Ozaki, T.; Asahara, H. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016, 7, 12503.
168. Yao, M.; Zhang, J.; Li, Z.; Guo, S.; Zhou, X.; Zhang, W. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-κB pathway. Int Immunopharmacol. 2020, 80, 106126.
169. Saraiya, M.; Nasser, R.; Zeng, Y.; Addya, S.; Ponnappan, R. K.; Fortina, P.; Anderson, D. G.; Albert, T. J.; Shapiro, I. M.; Risbud, M. V. Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells. Tissue Eng Part A. 2010, 16, 1443-1455.
170. Tendulkar, G.; Chen, T.; Ehnert, S.; Kaps, H. P.; Nüssler, A. K. Intervertebral disc nucleus repair: hype or hope? Int J Mol Sci. 2019, 20, 3622.
171. Roberts, S.; Ayad, S.; Menage, P. J. Immunolocalisation of type VI collagen in the intervertebral disc. Ann Rheum Dis. 1991, 50, 787-791.
172. Newell, N.; Little, J. P.; Christou, A.; Adams, M. A.; Adam, C. J.; Masouros, S. D. Biomechanics of the human intervertebral disc: A review of testing techniques and results. J Mech Behav Biomed Mater. 2017, 69, 420-434.
173. Clouet, J.; Grimandi, G.; Pot-Vaucel, M.; Masson, M.; Fellah, H. B.; Guigand, L.; Cherel, Y.; Bord, E.; Rannou, F.; Weiss, P.; Guicheux, J.; Vinatier, C. Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology (Oxford). 2009, 48, 1447-1450.
174. Li, J.; Liu, C.; Guo, Q.; Yang, H.; Li, B. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus. PLoS One. 2014, 9, e91799.
175. Guerin, H. A.; Elliott, D. M. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J Biomech. 2006, 39, 1410-1418.
176. Klein, J. A.; Hukins, D. W. Collagen fibre orientation in the annulus fibrosus of intervertebral disc during bending and torsion measured by x-ray diffraction. Biochim Biophys Acta. 1982, 719, 98-101.
177. Pearce, R. H.; Grimmer, B. J.; Adams, M. E. Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res. 1987, 5, 198-205.
178. Hee, H. T.; Chuah, Y. J.; Tan, B. H.; Setiobudi, T.; Wong, H. K. Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc. Spine (Phila Pa 1976). 2011, 36, 505-511.
179. Growney Kalaf, E. A.; Flores, R.; Bledsoe, J. G.; Sell, S. A. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications. Mater Sci Eng C Mater Biol Appl. 2016, 63, 198-210.
180. Li, Z.; Lang, G.; Chen, X.; Sacks, H.; Mantzur, C.; Tropp, U.; Mader, K. T.; Smallwood, T. C.; Sammon, C.; Richards, R. G.; Alini, M.; Grad, S. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials. 2016, 84, 196-209.
181. Woiciechowsky, C.; Abbushi, A.; Zenclussen, M. L.; Casalis, P.; Krüger, J. P.; Freymann, U.; Endres, M.; Kaps, C. Regeneration of nucleus pulposus tissue in an ovine intervertebral disc degeneration model by cell-free resorbable polymer scaffolds. J Tissue Eng Regen Med. 2014, 8, 811-820.
182. Priyadarshani, P.; Li, Y.; Yang, S.; Yao, L. Injectable hydrogel provides growth-permissive environment for human nucleus pulposus cells. J Biomed Mater Res A. 2016, 104, 419-426.
183. Feng, G.; Jin, X.; Hu, J.; Ma, H.; Gupte, M. J.; Liu, H.; Ma, P. X. Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype. Biomaterials. 2011, 32, 8182-8189.
184. Zhou, X.; Wang, J.; Fang, W.; Tao, Y.; Zhao, T.; Xia, K.; Liang, C.; Hua, J.; Li, F.; Chen, Q. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater. 2018, 71, 496-509.
185. Zhou, X.; Wang, J.; Huang, X.; Fang, W.; Tao, Y.; Zhao, T.; Liang, C.; Hua, J.; Chen, Q.; Li, F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater. 2018, 81, 115-128.
186. Huang, Y. Z.; Cai, J. Q.; Lv, F. J.; Xie, H. L.; Yang, Z. M.; Huang, Y. C.; Deng, L. Species variation in the spontaneous calcification of bone marrow-derived mesenchymal stem cells. Cytotherapy. 2013, 15, 323-329.
187. Vadalà, G.; Sowa, G.; Hubert, M.; Gilbertson, L. G.; Denaro, V.; Kang, J. D. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012, 6, 348-355.
188. Liu, C.; Zhu, C.; Li, J.; Zhou, P.; Chen, M.; Yang, H.; Li, B. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res. 2015, 3, 15012.
189. Yuan, C.; Wang, J.; Zhu, X.; Zheng, Y.; Huang, B.; Li, C.; Zhou, Y. Stress regulating osteogenic differentiation of human intervertebral disc cartilage endplate-derived stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2015, 29, 351-355.
190. Lv, F.; Lu, M.; Cheung, K. M.; Leung, V. Y.; Zhou, G. Intrinsic properties of mesenchymal stem cells from human bone marrow, umbilical cord and umbilical cord blood comparing the different sources of MSC. Curr Stem Cell Res Ther. 2012, 7, 389-399.
191. Liu, C.; Jin, Z.; Ge, X.; Zhang, Y.; Xu, H. Decellularized annulus fibrosus matrix/chitosan hybrid hydrogels with basic fibroblast growth factor for annulus fibrosus tissue engineering. Tissue Eng Part A. 2019, 25, 1605-1613.
192. Xu, J.; Liu, S.; Wang, S.; Qiu, P.; Chen, P.; Lin, X.; Fang, X. Decellularised nucleus pulposus as a potential biologic scaffold for disc tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019, 99, 1213-1225.
193. Illien-Jünger, S.; Pattappa, G.; Peroglio, M.; Benneker, L. M.; Stoddart, M. J.; Sakai, D.; Mochida, J.; Grad, S.; Alini, M. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine (Phila Pa 1976). 2012, 37, 1865-1873.
194. Baek, S. J.; Kang, S. K.; Ra, J. C. In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med. 2011, 43, 596-603.
195. Lee, M. J.; Kim, J.; Kim, M. Y.; Bae, Y. S.; Ryu, S. H.; Lee, T. G.; Kim, J. H. Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res. 2010, 9, 1754-1762.
196. Zhang, H.; Yu, S.; Zhao, X.; Mao, Z.; Gao, C. Stromal cell-derived factor-1α-encapsulated albumin/heparin nanoparticles for induced stem cell migration and intervertebral disc regeneration in vivo. Acta Biomater. 2018, 72, 217-227.
197. Frapin, L.; Clouet, J.; Chédeville, C.; Moraru, C.; Samarut, E.; Henry, N.; André, M.; Bord, E.; Halgand, B.; Lesoeur, J.; Fusellier, M.; Guicheux, J.; Le Visage, C. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials. 2020, 253, 120107.
198. Huang, D.; Peng, Y.; Ma, K.; Qing, X.; Deng, X.; Li, Z.; Shao, Z. Puerarin relieved compression-induced apoptosis and mitochondrial dysfunction in human nucleus pulposus mesenchymal stem cells via the PI3K/Akt pathway. Stem Cells Int. 2020, 2020, 7126914.
199. Liang, C. Z.; Li, H.; Tao, Y. Q.; Peng, L. H.; Gao, J. Q.; Wu, J. J.; Li, F. C.; Hua, J. M.; Chen, Q. X. Dual release of dexamethasone and TGF-β3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater. 2013, 9, 9423-9433.
200. Liu, J.; Tao, H.; Wang, H.; Dong, F.; Zhang, R.; Li, J.; Ge, P.; Song, P.; Zhang, H.; Xu, P.; Liu, X.; Shen, C. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev. 2017, 26, 901-911.
201. Huang, S.; Leung, V. Y.; Long, D.; Chan, D.; Lu, W. W.; Cheung, K. M.; Zhou, G. Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc. Biomaterials. 2013, 34, 6548-6558.
202. Ni, L.; Liu, X.; Sochacki, K. R.; Ebraheim, M.; Fahrenkopf, M.; Shi, Q.; Liu, J.; Yang, H. Effects of hypoxia on differentiation from human placenta-derived mesenchymal stem cells to nucleus pulposus-like cells. Spine J. 2014, 14, 2451-2458.
203. Zhang, Z.; Li, F.; Tian, H.; Guan, K.; Zhao, G.; Shan, J.; Ren, D. Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro. Chin Med J (Engl). 2014, 127, 314-321.
204. Ma, K.; Chen, S.; Li, Z.; Deng, X.; Huang, D.; Xiong, L.; Shao, Z. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage. 2019, 27, 41-48.
205. Liu, L.; DiGirolamo, C. M.; Navarro, P. A.; Blasco, M. A.; Keefe, D. L. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res. 2004, 294, 1-8.
206. Mårtensson, K.; Chrysis, D.; Sävendahl, L. Interleukin-1beta and TNF-alpha act in synergy to inhibit longitudinal growth in fetal rat metatarsal bones. J Bone Miner Res. 2004, 19, 1805-1812.
207. Liang, H.; Chen, S.; Huang, D.; Deng, X.; Ma, K.; Shao, Z. Effect of compression loading on human nucleus pulposus-derived mesenchymal stem cells. Stem Cells Int. 2018, 2018, 1481243.
208. Dahms, K.; Sharkova, Y.; Heitland, P.; Pankuweit, S.; Schaefer, J. R. Cobalt intoxication diagnosed with the help of Dr House. Lancet. 2014, 383, 574.
209. Goodman, S. B.; Pajarinen, J.; Yao, Z.; Lin, T. Inflammation and bone repair: from particle disease to tissue regeneration. Front Bioeng Biotechnol. 2019, 7, 230.
210. Johnson, K. E.; Makanji, Y.; Temple-Smith, P.; Kelly, E. K.; Barton, P. A.; Al-Musawi, S. L.; Mueller, T. D.; Walton, K. L.; Harrison, C. A. Biological activity and in vivo half-life of pro-activin A in male rats. Mol Cell Endocrinol. 2016, 422, 84-92.
211. Etulain, J. Platelets in wound healing and regenerative medicine. Platelets. 2018, 29, 556-568.
212. Zhu, Y.; Tan, J.; Zhu, H.; Lin, G.; Yin, F.; Wang, L.; Song, K.; Wang, Y.; Zhou, G.; Yi, W. Development of kartogenin-conjugated chitosan-hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci. 2017, 5, 784-791.