Quantum dots for bio-imaging technology: A systematic review
Quantum dots (QDs) have a variety of applications, including use in solar cells, drug delivery, biomaterials, and the development of water resource protection technologies. Being the leading materials in the medical field, QDs are currently used in drug delivery, preparation of antibodies and vaccines, gene delivery, and bio-imaging. One of the areas of interest in recent years has been the investigation of their key properties in bio-imaging. Bio-imaging is of particular importance in identifying diseases and many types of cancer, which can increase the quality of treatment and improve patient outcomes. The results of this research showed that various materials, such as cadmium selenium QDs, zinc sulfide QDs, indium phosphide QDs, and graphene QDs, could be used in this field. Among the different materials, Graphene, carbon, zinc-based, cadmium-based, and gold QDs have been of interest. In general, promising results have been observed in bio-imaging of various cancer cells, glioma cells, and even cancer treatment, which could be an important development in medical sciences and bioengineering. The present study is organized to review the latest achievements in this field, and suggestions for future research are presented in each section. It is suggested that the development of graphene and carbon QDs should receive more attention from researchers due to their higher biocompatibility. Furthermore, simultaneous drug delivery with bio-imaging could be among the issues that will be discussed in future research.
- Ashkani O, Abedi-Ravan B, YarAhmadi Y. Recent advances in the development of quantum materials for the construction of solar cells: A mini review. J Environ Friend Mater. 2024;1(1):67.
- Vefaghi M, Sedehi HR, Ashkani O. Recent advances in increasing the efficiency of solar cells using gold nanostructures/quantum dots, a comprehensive review. Character Applic Nanomater. 2025;8(2):11533. doi: 10.24294/can11533
- Ashkani O, Tavighi MR, Sabet H. Recent developments of quantum science in laser technologies, a mini-review. J Environ Friend Mater. 2024;1(2):43.
- Ashkani O, Rezaei-Sedehi H. The future of water purification with carbon and Graphene quantum dots, a comprehensive review. J Water Environ Nanotechnol. 2025;104:392-416. doi: 10.22090/jwent.2025.2054455.1887
- Rietsche R, Dremel C, Bosch S, Steinacker L, Meckel M, Leimeister JM. Quantum computing. Electron Markets. 2022;32(4):2525-2536. doi: 10.1007/s12525-022-00570-y
- Le N, Zhang M, Kim K. Quantum dots and their interaction with biological systems. Int J Mol Sci. 2022;23(18):10763. doi: 10.3390/ijms231810763
- Bazmi A, Hamsian-Etefaq R, Hashemi-Nasab S, Asefnejad A, Sadeq AM, Ashkani O. Role of quantum dots in the advancement of biomedical engineering: A general review. Adv J Chem Sec. 2025;8(8):1385-1397. doi: 10.48309/ajca.2025.499976.1769
- Gandhi SA, Sutariya PG, Soni HN, Chaudhari DY. Quantum dots: Application in medical science. Int J Nano Dimens. 2023;14(1):29-40. doi: 10.22034/ijnd.2022.1963190.2160
- Venkatachalam V. Quantum dots in dental applications: Paving the way for a promising future. Eur Arch Paediatric Dent. 2024;26:601-602. doi: 10.1007/s40368-024-00954-y
- Panja A, Patra P. A review on Quantum Dots (QDs) and their biomedical applications. 4open. 6:11. doi: 10.1051/fopen/2022020
- Sun F, Ghosh H, Tan Z, Sivoththaman S. Top-down synthesis and enhancing device adaptability of graphene quantum dots. Nanotechnology. 2023;34(18):185601. doi: 10.1088/1361-6528/acb7fb
- Kim HH, Lee YJ, Park C, et al. Bottom‐up synthesis of carbon quantum dots with high performance photo‐and electroluminescence. Part Part Syst Character. 2018;35(7):1800080. doi: 10.1002/ppsc.201800080
- Bae WK, Nam MK, Char K, Lee S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1− x Zn x S/ZnS nanocrystals. Chem Mater. 2008;20(16):5307-5313. doi: 10.1021/cm801201x
- Drummen GP. Quantum dots—from synthesis to applications in biomedicine and life sciences. Int J Mol Sci. 2010;11(1):154-163. doi: 10.3390/ijms11010154
- Tian P, Tang L, Teng KS, Lau SP. Graphene quantum dots from chemistry to applications. Mater Today Chem. 2018;10:221-258. doi: 10.1016/j.mtchem.2018.09.007
- Güçlü AD, Potasz P, Korkusinski M, Hawrylak P. Graphene Quantum Dots. Berlin, Heidelberg: Springer; 2014. p. 29. doi: 10.1007/978-3-662-44611-9
- Chen W, Lv G, Hu W, Li D, Chen S, Dai Z. Synthesis and applications of graphene quantum dots: A review. Nanotechnol Rev. 2018;7(2):157-185. doi: 10.1515/ntrev-2017-0199
- Henna TK, Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C. 2020;110:110651. doi: 10.1016/j.msec.2020.110651
- Kang S, Kim KM, Jung K, et al. Graphene oxide quantum dots derived from coal for bioimaging: facile and green approach. Sci Rep. 2019;9(1):4101. doi: 10.1038/s41598-018-37479-6
- Chung S, Revia RA, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 2021;33(22):1904362. doi: 10.1002/adma.201904362
- Valimukhametova AR, Fannon O, Topkiran UC, et al. Five near-infrared-emissive graphene quantum dots for multiplex bioimaging. 2D Mater. 2024;11(2):025009. doi: 10.1088/2053-1583/ad1c6e
- Moeini A, Anabestani H, Madaah Hosseini HR, Malek Khachatourian A. Luminescent properties of graphene quantum dots (GQDs) functionalized with LCysteine. J Ultrafine Grained Nanostructur Mater. 2023;56(1):121-128. doi: 10.22059/jufgnsm.2023.01.12
- Tabish TA, Scotton CJ, Ferguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine. 2018;13(15):1923-1937. doi: 10.2217/nnm-2018-0018
- Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces. 2014;6(15):12413-12421. doi: 10.1021/am504071z
- Hong GL, Zhao HL, Deng HH, et al. Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging. Int J Nanomedicine. 2018;13:4807-4815. doi: 10.2147/IJN.S168570
- Kortel M, Mansuriya BD, Vargas Santana N, Altintas Z. Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines. 2020;11(9):866. doi: 10.3390/mi11090866
- Ren C, Hu X, Zhou Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase‐like activity and metabolic regulation. Adv Sci. 2018;5(5):1700595. doi: 10.1002/advs.201700595
- Nurunnabi M, Khatun Z, Huh KM, et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7(8):6858-6867. doi: 10.1021/nn402043c
- Li P, Xu T, Wu S, Lei L, He D. Chronic exposure to graphene‐based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol. 2017;37(10):1140-1150. doi: 10.1002/jat.3468
- Schroeder KL, Goreham RV, Nann T. Graphene quantum dots for theranostics and bioimaging. Pharm Res. 2016;33(10):2337-2357. doi: 10.1007/s11095-016-1937-x
- Chen J. Graphene Quantum Dots and their Applications in Bioimaging And Catalysis. Nanyang Technological University; (2019). doi: 10.32657/10356/136527
- Wang D, Chen JF, Dai L. Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Character. 2015;32(5):515-523. doi: 10.1002/ppsc.201400219
- Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362-381. doi: 10.1039/C4CS00269E
- Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem.2018;8:96-109. doi: 10.1016/j.mtchem.2018.03.003
- Zhang Z, Zheng T, Li X, Xu J, Zeng H. Progress of carbon quantum dots in photocatalysis applications. Part Part Syst Character. 2016;33(8):457-472. doi: 10.1002/ppsc.201500243
- Salvi A, Kharbanda S, Thakur P, Shandilya M, Thakur A. Biomedical application of cabon quantum dots: A review. Carbon Trends. 2024;17:100407. doi: 10.1016/j.cartre.2024.100407
- Daby TPM, Modi U, Yadav AK, Bhatia D, Solanki R. Bioimaging and therapeutic applications of multifunctional carbon quantum dots: Recent progress and challenges. Next Nanotechnol. 2025;8:100158. doi: 10.1016/j.nxnano.2025.100158
- Xue B, Yang Y, Sun Y, Fan J, Li X, Zhang Z. Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. Int J Biol Macromol. 2019;122:954-961. doi: 10.1016/j.ijbiomac.2018.11.018
- Jana P, Dev A. Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer. Mater Today Commun. 2022;32:104068. doi: 10.1016/j.mtcomm.2022.104068
- Kamal A, Hong S, Ju H. Carbon quantum dots: Synthesis, characteristics, and quenching as biocompatible fluorescent probes. Biosensors. 2025;15(2):99. doi: 10.3390/bios15020099
- Ji C, Zhou Y, Leblanc RM, Peng Z. Recent developments of carbon dots in biosensing: A review. ACS Sens. 2020;5(9):2724-2741. doi: 10.1021/acssensors.0c01556
- Lin L, Song X, Chen Y, et al. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta. 2015;869:89-95. doi: 10.1016/j.aca.2015.02.024
- Huang Q, Lin X, Lin C, Zhang Y, Hu S, Wei C. A high performance electrochemical biosensor based on Cu2O–carbon dots for selective and sensitive determination of dopamine in human serum. Rsc Adv. 2015;5(67):54102-54108. doi: 10.1039/C5RA05433H
- Rezaei B, Hassani Z, Shahshahanipour M, Ensafi AA, Mohammadnezhad G. Application of modified mesoporous boehmite (γ‐AlOOH) with green synthesis carbon quantum dots for a fabrication biosensor to determine trace amounts of doxorubicin. Luminescence. 2018;33(8):1377-1386. doi: 10.1002/bio.3558
- Al-Sagheer F, Bumajdad A, Madkour M, Ghazal B. Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations. Sci Adv Mater. 2015;7(11):2352-2360. doi: 10.1166/sam.2015.2385
- Guijarro N, Campiña JM, Shen Q, Toyoda T, Lana-Villarreal T, Gómez R. Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys Chem Chem Phys. 2011;13(25):12024-12032. doi: 10.1039/C1CP20290A
- Deng D, Chen Y, Cao J, et al. High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem Mater. 2012;24(15):3029-3037. doi: 10.1021/cm3015594
- Caires AJ, Mansur AA, Carvalho IC, Carvalho SM, Mansur HS. Green synthesis of ZnS quantum dot/biopolymer photoluminescent nanoprobes for bioimaging brain cancer cells. Mater Chem Phys. 2020;244:122716. doi: 10.1016/j.matchemphys.2020.122716
- Manzoor K, Johny S, Thomas D, Setua S, Menon D, Nair S. Bio-conjugated luminescent quantum dots of doped ZnS: A cyto-friendly system fortargeted cancer imaging. Nanotechnology. 2009;20(6):065102. doi: 10.1088/0957-4484/20/6/065102
- Manaia EB. Zinc oxide (ZnO) based quantum dots for bioimaging applications of lipid nanocarriers (Doctoral dissertation, Université Paris Saclay (COmUE); Universidade estadual paulista (São Paulo, Brésil))’; 2016
- Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. BioImpacts: BI. 2014;4(3):149. doi: 10.15171/bi.2014.008
- Park J, Dvoracek C, Lee KH, et al. CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. Small. 2011;7(22):3148. doi: 10.1002/smll.201101558
- Guo W, Tu Y, Dong C, Zhang B, Hu C, Chang J. Synthesis of Zn-Cu-In-S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging. Theranostics. 2013;3(2):99. doi: 10.7150/thno.5361
- Singh D, Thapa S, Singh KR, Verma R, Singh RP, Singh J. Cadmium selenide quantum dots and its biomedical applications. Mater Lett X. 2023;18:100200. doi: 10.1016/j.mlblux.2023.100200
- Kumari A, Sharma A, Sharma R, Malairaman U, Singh RR. Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;248:119206. doi: 10.1016/j.saa.2020.119206
- Pawar V, Kumar AR, Zinjarde S, Gosavi S. Bioinspired inimitable cadmium telluride quantum dots for bioimaging purposes. J Nanosci Nanotechnol. 2013;13(6):3826-3831. doi: 10.1166/jnn.2013.7215
- Nguyen KC, Seligy VL, Tayabali AF. Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa. Nanotoxicology. 2013;7(2):202-211. doi: 10.3109/17435390.2011.648667
- Zheng W, Xu YM, Wu DD, et al. Acute and chronic cadmium telluride quantum dots-exposed human bronchial epithelial cells: The effects of particle sizes on their cytotoxicity and carcinogenicity. Biochem Biophys Res Commun. 2018;495(1):899-903. doi: 10.1016/j.bbrc.2017.11.074
- Katubi KM, Alzahrani FM, Ali D, Alarifi S. Dose-and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure. Hum Exp Toxicol. 2019;38(8):914-926. doi: 10.1177/0960327119843578
- Ghormade V, Gholap H, Kale S, Kulkarni V, Bhat S, Paknikar K. Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: A stable, biocompatible preparation for bio-imaging. J Biomater Sci Polym Ed. 2015;26(1):42-56. doi: 10.1080/09205063.2014.982240
- Bao H, Hao N, Yang Y, Zhao D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2010;3:481-489. doi: 10.1007/s12274-010-0008-6
- Rahman MM, Opo FA, Asiri AM. Cytotoxicity study of cadmium-selenium quantum dots (cdse QDs) for destroying the human HepG2 liver cancer cell. J Biomed Nanotechnol. 2021;17(11):2153-2164. doi: 10.1166/jbn.2021.3181
- Roy N, Moharana P, Ghosh K, Paira P. Green synthesis of highly luminescent biotin-conjugated CdSe quantum dots for bioimaging applications. N J Chem. 2020;44(39):16891-16899. doi: 10.1039/D0NJ03075A
- Saha AK, Sharma P, Sohn HB, et al. Fe doped CdTeS magnetic quantum dots for bioimaging. J Mater Chem B. 2013;1(45):6312-6320. doi: 10.1039/C3TB20859A
- Shivaji K, Mani S, Ponmurugan P, et al. Green-synthesis-derived CdS quantum dots using tea leaf extract: Antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl Nano Mater. 2018;1(4):1683-1693. doi: 10.1021/acsanm.8b00147
- Mansur AA, de Carvalho FG, Mansur RL, Carvalho SM, de Oliveira LC, Mansur HS. Carboxymethylcellulose/ZnCdS fluorescent quantum dot nanoconjugates for cancer cell bioimaging. Int J Biol Macromol. 2017;96:675-686. doi: 10.1016/j.ijbiomac.2016.12.078
- Pandey A, Yadav R, Verma S, Kaur M, Singh BP, Husale S. Au-nanoislands and quantum dots growth on flexible light weight MWCNTs paper exhibiting SEM resolution and NIR photodetecting capabilities. Carbon Trends, 2023;10:100241.
- Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech. 2011;74(7):592-604. doi: 10.1002/jemt.20928
- Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines. 2020;19(5):465-477. doi: 10.1080/14760584.2020.1758070
- Lian H, Li Y, Saravanakumar S, et al. Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordinat Chem Rev. 2022;452:214313. doi: 10.1016/j.ccr.2021.214313
- Song W, Wang D, Tian J, et al. Encapsulation of dual - passivated perovskite quantum dots for bio-imaging. Small. 2022;18(42):2204763. doi: 10.1002/smll.202204763
- Xin H, Sim WJ, Namgung B, Choi Y, Li B, Lee LP. Quantum biological tunnel junction for electron transfer imaging in live cells. Nat Commun. 2019;10(1):3245. doi: 10.1038/s41467-019-11212-x
- Fujii M, Fujii R, Takada M, Sugimoto H. Silicon quantum dot supraparticles for fluorescence bioimaging. ACS Appl Nano Mater. 2020;3(6):6099-6107. doi: 10.3390/polym12112565
- Johnson-Groh M. Silicon quantum dots have a bright future in bio-imaging. Scilight. 2025;2025:151102. doi: 10.1063/10.0036134
- Li R, Xu J, Mu X, Zeng F. A comprehensive review on the synthesis methods and applications of silicon quantum dots (SiQDs). Next Nanotechnol. 2025;7:100144. doi: 10.1016/j.nxnano.2025.100144
