Cite this article
6
Download
22
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Electrospun polymeric nanofibers as antimicrobial filters for a cleaner and safer environment

Renjith Sasi1* Anjaly Anil1 Parvathy Valiyaveettil Rudrasenan1 Roy Joseph1
Show Less
1 Central Analytical Facility, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
Submitted: 13 June 2025 | Revised: 15 September 2025 | Accepted: 26 September 2025 | Published: 12 November 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

Airborne particles such as particulates, spores, and hazardous bioaerosols pose a serious threat to human health. Filtration remains the most widely used method to combat deteriorating air and water quality. While conventional air filters can capture airborne particles, their inability to inactivate pathogens leads to the accumulation of bioaerosols, thereby creating a secondary source of pollution. Incorporating antimicrobial properties into air filters offers a significant advantage by not only trapping bioaerosols but also inhibiting microbial growth. Conventional air filters can be transformed into antimicrobial filters through surface coatings with antimicrobial agents such as metal and metal oxide nanomaterials, ionic liquids, quaternary ammonium or phosphonium salts, antimicrobial polymers, N-halamine compounds, antimicrobial peptides, antibiotics, and potent natural extracts. However, coating methods often disrupt pore structure and cause uneven distribution of antimicrobial agents, which may compromise filtration efficiency. Electrospinning is a promising alternative that enables the fabrication of uniform micro- and nanofibers capable of effectively filtering impurities from air or water. Antimicrobial properties can be introduced by incorporating antimicrobial agents directly into the spinning solution and optimizing the formulation parameters. Over the years, a wide range of polymers and antimicrobial additives have been explored for the development of antimicrobial filters using various methods. This article reviews recent advances in antimicrobial filter fabrication, with particular focus on electrospinning, and examines how antimicrobial fillers influence the structural and functional properties of electrospun nanofibers.

Keywords
Filters
Antimicrobial
Electrospinning
Polymers
Nanofibers
Funding
The authors would like to thank the Department of Science and Technology- Technical Research Centre (DST-TRC) (Grant no: 8318) for the financial support.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Ashraf MA, Mohd Hanafiah M. Sustaining life on earth system through clean air, pure water, and fertile soil. Environ Sci Pollut Res. 2019;26(14):13679-13680. doi: 10.1007/s11356-018-3528-3

 

  1. Edo GI, Itoje-akpokiniovo LO, Obasohan P, et al. Impact of environmental pollution from human activities on water, air quality and climate change. Ecol Front. 2024;44(5):874-889. doi: 10.1016/j.ecofro.2024.02.014

 

  1. Kelly FJ, Fussell JC. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631-649. doi: 10.1007/s10653-015-9720-1

 

  1. Lin L, Yang H, Xu X. Effects of water pollution on human health and disease heterogeneity: A review. Front Environ Sci. 2022;10:880246. doi: 10.3389/fenvs.2022.880246

 

  1. Azimi MN, Rahman MM. Unveiling the health consequences of air pollution in the world’s most polluted nations. Sci Rep. 2024;14(1):9856. doi: 10.1038/s41598-024-60786-0

 

  1. McNeely JA. The sinking ark: Pollution and the worldwide loss of biodiversity. Biodivers Conserv. 1992;1(1):2-18. doi: 10.1007/bf00700247

 

  1. Alvarenga MOP, Dias JMM, Lima BJLA, Gomes ASL, Monteiro GQM. The implementation of portable air-cleaning technologies in healthcare settings - a scoping review. J Hosp Infect. 2023;132:93-103. doi: 10.1016/j.jhin.2022.12.004

 

  1. Brainard J, Jones NR, Swindells IC, et al. Effectiveness of filtering or decontaminating air to reduce or prevent respiratory infections: A systematic review. Prev Med. 2023;177:107774. doi: 10.1016/j.ypmed.2023.107774

 

  1. Nourozi B, Wierzbicka A, Yao R, Sadrizadeh S. A systematic review of ventilation solutions for hospital wards: Addressing cross-infection and patient safety. Build Environ. 2024;247:110954. doi: 10.1016/j.buildenv.2023.110954

 

  1. Gustavsson J. New developments in air filter test methods and classification. Filtr Sep. 1996;33(2):155-154. doi: 10.1016/S0015-1882(97)84207-3

 

  1. First, Melvin W. HEPA filters. J Am Biol Saf Assoc. 1998;3.1:33-42.

 

  1. Sankurantripati S, Duchaine F. Indoor air quality control for airborne diseases: A review on portable UV air purifiers. Fluids. 2024;9(12):281. doi: 10.3390/fluids9120281

 

  1. Dudziak M, Kudlek E. Removal of hardness in wastewater effluent using membrane filtration. Archit Civ Eng Environ. 2019;12(2):141-147. doi: 10.21307/acee-2019-030

 

  1. Abdulraheem FS, Al-Khafaji ZS, Hashim KS, Muradov M, Kot P, Shubbar AA. Natural filtration unit for removal of heavy metals from water. IOP Conf Ser Mater Sci Eng. 2020;888(1):012034. doi: 10.1088/1757-899X/888/1/012034

 

  1. Ayach J, El Malti W, Duma L, et al. Comparing conventional and advanced approaches for heavy metal removal in wastewater treatment: An in-depth review emphasizing filter-based strategies. Polymers (Basel). 2024;16(14):1959. doi: 10.3390/polym16141959

 

  1. Venis RA, Basu OD. Mechanisms and efficacy of disinfection in ceramic water filters: A critical review. Crit Rev Environ Sci Technol. 2021;51(24):2934-2974. doi: 10.1080/10643389.2020.1806685

 

  1. Ahmedna M, Marshall WE, Husseiny AA, Rao RM, Goktepe I. The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res. 2004;38(4):1062-1068. doi: 10.1016/j.watres.2003.10.047

 

  1. Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci (China). 2018;67:23-35. doi: 10.1016/j.jes.2017.08.027

 

  1. Bing-Yuan, Zhang YH, Leung NHL, Cowling BJ, Yang ZF. Role of viral bioaerosols in nosocomial infections and measures for prevention and control. J Aerosol Sci. 2018;117:200-211. doi: 10.1016/j.jaerosci.2017.11.011

 

  1. Ahmed O, Oproescu M, Iana GV. Necessity of emergent materials development for air filtration to increase air quality. In: 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). United States: IEEE; 2024. p. 1-5. doi: 10.1109/ECAI61503.2024.10607478

 

  1. Guardabassi L, Courvalin P. Modes of antimicrobial action and mechanisms of bacterial resistance. In: Aarestrup FM, editor. Antimicrobial Resistance in Bacteria of Animal Origin. Columbia: ASM Press; 2019. p. 1-18. doi: 10.1128/9781555817534.ch1

 

  1. Komaladewi AAIAS, Khoiruddin K, Surata IW, Subagia IDGA, Wenten IG. Recent advances in antimicrobial air filter. In: Kusrini E, Juwono FH, Yatim A, Setiawan EA, eds. E3S Web of Confernces. Vol. 67. 2018. p. 03016. doi: 10.1051/e3sconf/20186703016

 

  1. Yong LX, Calautit JK. A comprehensive review on the integration of antimicrobial technologies onto various surfaces of the built environment. Sustainability. 2023;15(4):3394. doi: 10.3390/su15043394

 

  1. Liu Q, Deng J, Yan W, et al. Burden and trends of infectious disease mortality attributed to air pollution, unsafe water, sanitation, and hygiene, and non-optimal temperature globally and in different socio-demographic index regions. Glob Health Res Policy. 2024;9(1):23. doi: 10.1186/s41256-024-00366-x

 

  1. Daels N, De Vrieze S, Sampers I, et al. Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination. 2011;275(1-3):285-290. doi: 10.1016/j.desal.2011.03.012

 

  1. Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun nanofiber membranes for air filtration: A review. Nanomaterials. 2022;12(7):1077. doi: 10.3390/nano12071077

 

  1. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015;2015:246012. doi: 10.1155/2015/246012

 

  1. Pullangott G, Kannan U, Gayathri S, Kiran DV, Maliyekkal SM. A comprehensive review on antimicrobial face masks: An emerging weapon in fighting pandemics. RSC Adv. 2021;11(12):6544-6576. doi: 10.1039/D0RA10009A

 

  1. Madalosso HB, Machado R, Hotza D, Marangoni C. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: A State‐of‐the‐art review. Adv Eng Mater. 2021;23(6):2001456. doi: 10.1002/adem.202001456

 

  1. Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Surface modification of water purification membranes. Angew Chem Int Ed. 2017;56(17):4662-4711. doi: 10.1002/anie.201601509

 

  1. Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-347. doi: 10.1016/j.biotechadv.2010.01.004

 

  1. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17(14):R89-R106. doi: 10.1088/0957-4484/17/14/R01

 

  1. Henning LM, Abdullayev A, Vakifahmetoglu C, et al. Review on polymeric, inorganic, and composite materials for air filters: From processing to properties. Adv Energy Sustain Res. 2021;2(5):2100005. doi: 10.1002/aesr.202100005

 

  1. Souzandeh H, Wang Y, Netravali AN, Zhong WH. Towards sustainable and multifunctional air-filters: A review on biopolymer-based filtration materials. Polym Rev. 2019;59(4):651-686. doi: 10.1080/15583724.2019.1599391

 

  1. Hossain MT, Shahid MA, Mahmud N, et al. Research and application of polypropylene: A review. Discov Nano. 2024;19(1):2. doi: 10.1186/s11671-023-03952-z

 

  1. Demir B, Cerkez I, Worley SD, Broughton RM, Huang TS. N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl Mater Interfaces. 2015;7(3):1752-1757. doi: 10.1021/am507329m

 

  1. Medvedev AZ, Bokhonov BB, Kiselev OS, et al. Silver nanoparticle-modified melt-blown polypropylene: Antibacterial and antifungal properties and antiviral activity against SARS-CoV-2. Mater Lett. 2023;346:134557. doi: 10.1016/j.matlet.2023.134557

 

  1. Kim S, Chung J, Lee SH, Yoon JH, Kweon DH, Chung WJ. Tannic acid-functionalized HEPA filter materials for influenza virus capture. Sci Rep. 2021;11(1):979. doi: 10.1038/s41598-020-78929-4

 

  1. Kasbe PS, Gade H, Liu S, Chase GG, Xu W. Ultrathin polydopamine-graphene oxide hybrid coatings on polymer filters with improved filtration performance and functionalities. ACS Appl Bio Mater. 2021;4(6):5180-5188. doi: 10.1021/acsabm.1c00367

 

  1. Abd Ali SAZ, Joubert A, Andrès Y. Evaluation of antimicrobial effect of zinc pyrithione against airborne fungi and bacteria growth collected onto new and loaded HVAC fibrous filters. Processes. 2021;9(9):1528. doi: 10.3390/pr9091528

 

  1. Sasi R, Sreejith SL, Ramesh G, et al. Ionic liquid based antimicrobial coating on polymeric surface: A green chemistry approach. Results Surf Interfaces. 2021;5:100026. doi: 10.1016/j.rsurfi.2021.100026

 

  1. Kumaran S, Oh E, Han S, Choi HJ. Photopolymerizable, universal antimicrobial coating to produce high-performing, multifunctional face masks. Nano Lett. 2021;21(12):5422-5429. doi: 10.1021/acs.nanolett.1c00525

 

  1. Ren Y, Guo J, Lu Q, Xu D, Qin J, Yan F. Polypropylene nonwoven fabric@ poly(ionic liquid)s for switchable oil/water separation, dye absorption, and antibacterial applications. ChemSusChem. 2018;11(6):1092-1098. doi: 10.1002/cssc.201702320

 

  1. Jeong SB, Heo KJ, Lee BU. Antimicrobial air filters using natural sea salt particles for deactivating airborne bacterial particles. Int J Environ Res Public Health. 2019;17(1):190. doi: 10.3390/ijerph17010190

 

  1. Watson R, Oldfield M, Bryant JA, et al. Efficacy of antimicrobial and anti-viral coated air filters to prevent the spread of airborne pathogens. Sci Rep. 2022;12(1):2803. doi: 10.1038/s41598-022-06579-9

 

  1. Rak MJ, Friščić T, Moores A. One-step, solvent-free mechanosynthesis of silver nanoparticle-infused lignin composites for use as highly active multidrug resistant antibacterial filters. RSC Adv. 2016;6(63):58365-58370. doi: 10.1039/C6RA03711A

 

  1. Hwang GB, Heo KJ, Yun JH, et al. Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS One. 2015;10(5):e0126481. doi: 10.1371/journal.pone.0126481

 

  1. Ko YS, Joe YH, Seo M, Lim K, Hwang J, Woo K. Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. J Mater Chem B. 2014;2(39):6714-6722. doi: 10.1039/C4TB01068J

 

  1. Jung JH, Hwang GB, Lee JE, Bae GN. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir. 2011;27(16):10256-10264. doi: 10.1021/la201851r

 

  1. Le VCT, Yoon S, Kang E, et al. A capture and inactivation system against pathogens in indoor air using copper nanoparticle decorated melamine sponge hybrid air filters. Environ Sci Adv. 2022;1(3):356-364. doi: 10.1039/D2VA00041E

 

  1. Heo KJ, Jeong SB, Shin J, et al. Water-repellent TiO2 -organic dye-based air filters for efficient visible-light-activated photochemical inactivation against bioaerosols. Nano Lett. 2021;21(4):1576-1583. doi: 10.1021/acs.nanolett.0c03173

 

  1. Dong X, Al Awak M, Wang P, Sun YP, Yang L. Carbon dot incorporated multi-walled carbon nanotube coated filters for bacterial removal and inactivation. RSC Adv. 2018;8(15):8292-8301. doi: 10.1039/C8RA00333E

 

  1. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF. Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng. 2014;2(7):1559-1565. doi: 10.1021/sc500044p

 

  1. Woo MH, Lee JH, Rho SG, et al. Evaluation of the performance of dialdehyde cellulose filters against airborne and waterborne bacteria and viruses. Ind Eng Chem Res. 2011;50(20):11636-11643. doi: 10.1021/ie201502p

 

  1. Ji D, Lin Y, Guo X, et al. Electrospinning of nanofibres. Nat Rev Methods Primer. 2024;4(1):1. doi: 10.1038/s43586-023-00278-z

 

  1. Wendorff JH, Agarwal S, Greiner A. Electrospinning: Materials, Processing, and Applications. United States: Wiley-VCH; 2012.

 

  1. Park JS. Electrospinning and its applications. Adv Nat Sci Nanosci Nanotechnol. 2010;1(4):043002. doi: 10.1088/2043-6262/1/4/043002

 

  1. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci. 2005;96(2):557-569. doi: 10.1002/app.21481

 

  1. Han W, Wang L, Li Q, et al. A review: Current status and emerging developments on natural polymer‐based electrospun fibers. Macromol Rapid Commun. 2022;43(21):2200456. doi: 10.1002/marc.202200456

 

  1. Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater. 2004;16(14):1151-1170. doi: 10.1002/adma.200400719

 

  1. Folgado E, Ladmiral V, Semsarilar M. Towards permanent hydrophilic PVDF membranes. Amphiphilic PVDF-b-PEG-b-PVDF triblock copolymer as membrane additive. Eur Polym J. 2020;131:109708. doi: 10.1016/j.eurpolymj.2020.109708

 

  1. Dallaev R, Pisarenko T, Sobola D, Orudzhev F, Ramazanov S, Trčka T. Brief review of PVDF properties and applications potential. Polymers (Basel). 2022;14(22):4793. doi: 10.3390/polym14224793

 

  1. Tang Y, Lin Y, Ma W, Wang X. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. J Membr Sci. 2021;639:119759. doi: 10.1016/j.memsci.2021.119759

 

  1. Xiao Y, Wen E, Sakib N, et al. Performance of electrospun polyvinylidene fluoride nanofibrous membrane in air filtration. Autex Res J. 2020;20(4):552-559. doi: 10.2478/aut-2019-0043

 

  1. Wang X, Xiao C, Liu H, Chen M, Hao J, Wu Y. A study on fabrication of PVDF-HFP/PTFE blend membranes with controllable and bicontinuous structure for highly effective water-in-oil emulsion separation. RSC Adv. 2018;8(49):27754-27762. doi: 10.1039/C8RA04547J

 

  1. Ganesh VA, Ranganath AS, Baji A, et al. Electrospun differential wetting membranes for efficient oil-water separation. Macromol Mater Eng. 2016;301(7):812-817. doi: 10.1002/mame.201600074

 

  1. Wang Y, Lai C, Wang X, et al. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property. ACS Appl Mater Interfaces. 2016;8(38):25612-25620. doi: 10.1021/acsami.6b08747

 

  1. Bakhsh N, Ahmed Z, Mahar RB, Khatri Z. Development and application of electrospun modified polyvinylidene fluoride (PVDF) nanofibers membrane for biofouling control in membrane bioreactor. Desalination Water Treat. 2021;217:74-82. doi: 10.5004/dwt.2021.26734

 

  1. Ince Yardimci A, Kayhan M, Durmus A, Aksoy M, Tarhan O. Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Res Eng Struct Mater. 2022;8:223-231. doi: 10.17515/resm2022.357na1027

 

  1. Felix Swamidoss V, Bangaru M, Nalathambi G, Sangeetha D, Selvam AK. Silver-incorporated poly vinylidene fluoride nanofibers for bacterial filtration. Aerosol Sci Technol. 2019;53(2):196-206. doi: 10.1080/02786826.2018.1554892

 

  1. Čech Barabaszová K, Holešová S, Hundáková M, et al. Antimicrobial PVDF nanofiber composites with the ZnO - vermiculite - chlorhexidine based nanoparticles and their tensile properties. Polym Test. 2021;103:107367. doi: 10.1016/j.polymertesting.2021.107367

 

  1. Spasova M, Manolova N, Markova N, Rashkov I. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties. Appl Surf Sci. 2016;363:363-371. doi: 10.1016/j.apsusc.2015.12.049

 

  1. Ali Hussein A, Sabr OH. Preparation and facilitation of antibacterial activity, hydrophilicity of piezo–pvdf/n-mgo film by electro-spinning and spin coated for wound dressing: A comparative study. J Mech Eng Res Dev. 2019;42(4):23-31. doi: 10.26480/jmerd.04.2019.23.31

 

  1. He T, Wang J, Huang P, et al. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloids Surf B Biointerfaces. 2015;130:278-286. doi: 10.1016/j.colsurfb.2015.04.026

 

  1. Capkova P, Kormunda M, Kolska Z, Trögl J, Munzarova M, Rysanek P. Electrospun antimicrobial PVDF‐DTAB nanofibrous membrane for air filtration: Effect of DTAB on structure, morphology, adhesion, and antibacterial properties. Macromol Mater Eng. 2018;303(3):1700415. doi: 10.1002/mame.201700415

 

  1. Yao C, Li X, Neoh KG, Shi Z, Kang ET. Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes. Appl Surf Sci. 2009;255(6):3854-3858. doi: 10.1016/j.apsusc.2008.10.063

 

  1. Khalil AM, Hassanin AH, El-kaliuoby MI, et al. Innovative antibacterial electrospun nanofibers mats depending on piezoelectric generation. Sci Rep. 2022;12(1):21788. doi: 10.1038/s41598-022-25212-3

 

  1. Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217-1256. doi: 10.1016/j.progpolymsci.2010.04.002

 

  1. Tan PS, Teoh SH. Effect of stiffness of polycaprolactone (PCL) membrane on cell proliferation. Mater Sci Eng C. 2007;27(2):304-308. doi: 10.1016/j.msec.2006.03.010

 

  1. Azari A, Golchin A, Mahmoodinia Maymand M, Mansouri F, Ardeshirylajimi A. Electrospun polycaprolactone nanofibers: Current research and applications in biomedical application. Adv Pharm Bull. 2022;12(4):658-672. doi: 10.34172/apb.2022.070

 

  1. Kodali D, Syed F, Jeelani S, Rangari VK. Fabrication and characterization of forcespun polycaprolactone microfiber scaffolds. Mater Res Express. 2020;7(12):125402. doi:10.1088/2053-1591/abcac1

 

  1. Ekram B, Abdel-Hady BM, El-kady AM, Amr SM, Waley AI, Guirguis OW. Optimum parameters for the production of nano-scale electrospun polycaprolactone to be used as a biomedical material. Adv Nat Sci Nanosci Nanotechnol. 2017;8(4):045018. doi: 10.1088/2043-6254/aa92b4

 

  1. Kao HH, Kuo CY, Tagadur Govindaraju D, Chen KS, Chen JP. Polycaprolactone/chitosan composite nanofiber membrane as a preferred scaffold for the culture of mesothelial cells and the repair of damaged mesothelium. Int J Mol Sci. 2022;23(17):9517. doi: 10.3390/ijms23179517

 

  1. Borges-Vilches J, Unalan I, Fernández K, Boccaccini AR. Fabrication of biocompatible electrospun poly(ε-caprolactone)/gelatin nanofibers loaded with pinus radiata bark extracts for wound healing applications. Polymers (Basel). 2022;14(12):2331. doi: 10.3390/polym14122331

 

  1. Karuppuswamy P, Reddy Venugopal J, Navaneethan B, Luwang Laiva A, Ramakrishna S. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride. Mater Lett. 2015;141:180-186. doi: 10.1016/j.matlet.2014.11.044

 

  1. Madhaiyan K, Sridhar R, Sundarrajan S, Venugopal JR, Ramakrishna S. Vitamin B12 loaded polycaprolactone nanofibers: A novel transdermal route for the water soluble energy supplement delivery. Int J Pharm. 2013;444(1-2):70-76. doi: 10.1016/j.ijpharm.2013.01.040

 

  1. Palacios Hinestroza H, Urena-Saborio H, Zurita F, Guerrero De León AA, Sundaram G, Sulbarán-Rangel B. Nanocellulose and polycaprolactone nanospun composite membranes and their potential for the removal of pollutants from water. Molecules. 2020;25(3):683. doi: 10.3390/molecules25030683

 

  1. López-Esparza J, Espinosa-Cristóbal LF, Donohue-Cornejo A, Reyes-López SY. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Ind Eng Chem Res. 2016;55(49):12532-12538. doi: 10.1021/acs.iecr.6b02300

 

  1. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, et al. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. 2017;2017:1-9. doi: 10.1155/2017/4752314

 

  1. Jaisankar E, Azarudeen RS, Thirumarimurugan M. Nanoparticle-mediated polycaprolactone based nanofiber mats for enhanced apoptosis of breast cancer cell line with improved cell viability of fibroblast cell line: Controlled drug release and antimicrobial assay. J Drug Deliv Sci Technol. 2023;84:104451. doi: 10.1016/j.jddst.2023.104451

 

  1. Permyakova ES, Manakhov A, Kiryukhantsev-Korneev PV, et al. Self-sanitizing polycaprolactone electrospun nanofiber membrane with ag nanoparticles. J Funct Biomater. 2023;14(7):336. doi: 10.3390/jfb14070336

 

  1. El-Naggar ME, Shalaby ES, Abd-Al-Aleem AH, Abu-Saied MA, Youssef AM. Synthesis of environmentally benign antimicrobial dressing nanofibers based on polycaprolactone blended with gold nanoparticles and spearmint oil nanoemulsion. J Mater Res Technol. 2021;15:3447-3460. doi: 10.1016/j.jmrt.2021.09.136

 

  1. Dias AM, Da Silva FG, Monteiro APDF, Pinzón-García AD, Sinisterra RD, Cortés ME. Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease. Mater Sci Eng C. 2019;103:109798. doi: 10.1016/j.msec.2019.109798

 

  1. Wang Y, Wang X, Zhou D, et al. Preparation and characterization of polycaprolactone (PCL) antimicrobial wound dressing loaded with pomegranate peel extract. ACS Omega. 2023;8(23):20323-20331. doi: 10.1021/acsomega.2c08180

 

  1. Sahal G, Nasseri B, Ebrahimi A, Bilkay IS. Electrospun essential oil-polycaprolactone nanofibers as antibiofilm surfaces against clinical Candida tropicalis isolates. Biotechnol Lett. 2019;41(4-5):511-522. doi: 10.1007/s10529-019-02660-y

 

  1. Permyakova ES, Solovieva AO, Sitnikova N, et al. Polycaprolactone nanofibers functionalized by fibronectin/gentamicin and implanted silver for enhanced antibacterial properties, cell adhesion, and proliferation. Polymers. 2024;16(2):261. doi: 10.3390/polym16020261

 

  1. Khandaker M, Progri H, Arasu DT, Nikfarjam S, Shamim N. Use of polycaprolactone electrospun nanofiber mesh in a face mask. Materials. 2021;14(15):4272. doi: 10.3390/ma14154272

 

  1. Permyakova ES, Manakhov AM, Kiryukhantsev-Korneev PV, et al. Electrospun polycaprolactone/ZnO nanocomposite membranes with high antipathogen activity. Polymers. 2022;14(24):5364. doi: 10.3390/polym14245364

 

  1. Qasim M, Duong DD, Lee JY, Lee NY. Fabrication of polycaprolactone nanofibrous membrane‐embedded microfluidic device for water filtration. J Appl Polym Sci. 2020;137(40):49207. doi: 10.1002/app.49207

 

  1. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: An overview. Prog Polym Sci. 2007;32(4):455-482. doi: 10.1016/j.progpolymsci.2007.01.005

 

  1. Casasola R, Thomas NL, Trybala A, Georgiadou S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer. 2014;55(18):4728-4737. doi: 10.1016/j.polymer.2014.06.032

 

  1. Maleki H, Azimi B, Ismaeilimoghadam S, Danti S. Poly(lactic acid)-based electrospun fibrous structures for biomedical applications. Appl Sci. 2022;12(6):3192. doi: 10.3390/app12063192

 

  1. Yang J, Li F, Lu G, et al. Electrospun biodegradable poly(L-lactic acid) nanofiber membranes as highly porous oil sorbent nanomaterials. Nanomaterials (Basel). 2022;12(15):2670. doi: 10.3390/nano12152670

 

  1. Soo XYD, Jia L, Lim QF, et al. Hydrolytic degradation and biodegradation of polylactic acid electrospun fibers. Chemosphere. 2024;350:141186. doi: 10.1016/j.chemosphere.2024.141186

 

  1. Ge J, Lv X, Zhou J, et al. Multi-level structured polylactic acid electrospun fiber membrane based on green solvents for high-performance air filtration. Sep Purif Technol. 2024;331:125659. doi: 10.1016/j.seppur.2023.125659

 

  1. Karabulut FNH, Fomra D, Höfler G, Chand NA, Beckermann GW. Virucidal and bactericidal filtration media from electrospun polylactic acid nanofibres capable of protecting against COVID-19. Membranes (Basel). 2022;12(6):571. doi: 10.3390/membranes12060571

 

  1. Chiloeches A, Cuervo-Rodríguez R, Gil-Romero Y, Fernández- García M, Echeverría C, Muñoz-Bonilla A. Electrospun polylactic acid-based fibers loaded with multifunctional antibacterial biobased polymers. ACS Appl Polym Mater. 2022;4(9):6543-6552. doi: 10.1021/acsapm.2c00928

 

  1. Palmieri S, Pierpaoli M, Riderelli L, Qi S, Ruello ML. Preparation and characterization of an electrospun PLA-cyclodextrins composite for simultaneous high-efficiency PM and VOC removal. J Compos Sci. 2020;4(2):79. doi: 10.3390/jcs4020079

 

  1. Wang Z, Pan Z, Wang J, Zhao R. A novel hierarchical structured poly(lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance. J Nanomater. 2016;2016:1-17. doi: 10.1155/2016/6272983

 

  1. Lin M, Shen J, Qian Q, Li T, Zhang C, Qi H. Fabrication of poly(lactic acid)@TiO2 electrospun membrane decorated with metal-organic frameworks for efficient air filtration and bacteriostasis. Polymers (Basel). 2024;16(7):889. doi: 10.3390/polym16070889

 

  1. Subash A, Naebe M, Wang X, Sahoo SK, Kandasubramanian B. Electrospinning of polylactic acid fibers reinforced with Ti3C2 for the removal of nickel ions from wastewater. Hybrid Adv. 2023;4:100109. doi: 10.1016/j.hybadv.2023.100109

 

  1. Ke L, Yang T, Liang C, et al. Electroactive, antibacterial, and biodegradable poly(lactic acid) nanofibrous air filters for healthcare. ACS Appl Mater Interfaces. 2023;15(27):32463-32474. doi: 10.1021/acsami.3c05834

 

  1. Shao W, Niu J, Han R, et al. Electrospun multiscale poly(lactic acid) nanofiber membranes with a synergistic antibacterial effect for air-filtration applications. ACS Appl Polym Mater. 2023;5(11):9632-9641. doi: 10.1021/acsapm.3c02109

 

  1. Chen Q, Zhao K, Li G, et al. Highly permeable polylactic acid membrane grafted with quaternary ammonium salt for effective and durable water disinfection. ACS Appl Mater Interfaces. 2022;14(38):43741-43748. doi: 10.1021/acsami.2c11551

 

  1. Zhu G, Li X, Li XP, et al. Nanopatterned electroactive polylactic acid nanofibrous MOFilters for efficient PM0.3 filtration and bacterial inhibition. ACS Appl Mater Interfaces. 2023;15(40):47145-47157. doi: 10.1021/acsami.3c11941

 

  1. Facchi DP, Facchi SP, Souza PR, et al. Composite filter with antimicrobial and anti-adhesive properties based on electrospun poly(butylene adipate-co-terephthalate)/poly(acid lactic)/Tween 20 fibers associated with silver nanoparticles. J Membr Sci. 2022;650:120426. doi: 10.1016/j.memsci.2022.120426

 

  1. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR. Polyurethane types, synthesis and applications - a review. RSC Adv. 2016;6(115):114453-114482. doi: 10.1039/C6RA14525F

 

  1. Akduman C, Kumbasar EPA. Electrospun polyurethane nanofibers. In: Yilmaz F, editor. Aspects of Polyurethanes. London: InTech; 2017. doi: 10.5772/intechopen.69937

 

  1. Liu F, Li M, Shao W, et al. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance. J Colloid Interface Sci. 2019;557:318-327. doi: 10.1016/j.jcis.2019.08.099

 

  1. Beycan B, Kalkan Erdoğan M, Sancak E, Karakışla M, Saçak M. Creating safe, biodegradable nanofibers for food protection: A look into waterborne polyurethane electrospinning. Ind Eng Chem Res. 2024;63(33):14495-14507. doi: 10.1021/acs.iecr.4c00759

 

  1. Chen X, Xu Y, Liang M, et al. Honeycomb-like polysulphone/ polyurethane nanofiber filter for the removal of organic/inorganic species from air streams. J Hazard Mater. 2018;347:325-333. doi: 10.1016/j.jhazmat.2018.01.012

 

  1. Shao W, Zhang Y, Sun N, Li J, Liu F, He J. Polystyrene/fluorinated polyurethane electrospinning nanofiber membranes incorporated with graphene oxide-halamine as mask filter materials for reusable antibacterial applications. ACS Appl Nano Mater. 2022;5(9):13573-13582. doi: 10.1021/acsanm.2c03269

 

  1. Juraij K, Ammed SP, Chingakham C, et al. Electrospun polyurethane nanofiber membranes for microplastic and nanoplastic separation. ACS Appl Nano Mater. 2023;6(6):4636-4650. doi: 10.1021/acsanm.3c00112

 

  1. Ding W, Wei S, Zhu J, Chen X, Rutman D, Guo Z. Manipulated electrospun PVA nanofibers with inexpensive salts. Macromol Mater Eng. 2010;295(10):958-965. doi: 10.1002/mame.201000188

 

  1. Kusumaatmaja A, Sukandaru B, Chotimah, Triyana K. Application of Polyvinyl Alcohol Nanofiber Membrane for Smoke Filtration. In: AIP Conference Proceedings; 2016. p. 150006. doi: 10.1063/1.4958579

 

  1. Kim G, Doh SJ, Kim Y, Oh HJ, Lee GD, Im JN. Electrospun polyvinyl alcohol composite nonwovens for air filtration materials in the humidity environment. Fibers Polym. 2022;23(3):690-698. doi: 10.1007/s12221-022-3418-7

 

  1. Li J, Gao F, Liu LQ, Zhang Z. Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett. 2013;7(8):683-689. doi: 10.3144/expresspolymlett.2013.65

 

  1. Kim HJ, Choi DI, Sung SK, et al. Eco-friendly poly(vinyl alcohol) nanofiber-based air filter for effectively capturing particulate matter. Appl Sci. 2021;11(9):3831. doi: 10.3390/app11093831

 

  1. Rochardjo HS, Fatkhurrohman F, Kusumaatmaja A, Yudhanto F. Fabrication of nanofiltration membrane based on polyvinyl alcohol nanofibers reinforced with cellulose nanocrystal using electrospinning techniques. Int J Technol. 2021;12(2):329. doi: 10.14716/ijtech.v12i2.4173

 

  1. Zhang Q, Li Q, Zhang L, et al. Preparation of electrospun nanofibrous poly(vinyl alcohol)/cellulose nanocrystals air filter for efficient particulate matter removal with repetitive usage capability via facile heat treatment. Chem Eng J. 2020;399:125768. doi: 10.1016/j.cej.2020.125768

 

  1. Blosi M, Costa AL, Ortelli S, et al. Polyvinyl alcohol/silver electrospun nanofibers: Biocidal filter media capturing virus‐size particles. J Appl Polym Sci. 2021;138(46):51380. doi: 10.1002/app.51380

 

  1. Chueachot R, Promarak V, Saengsuwan S. Enhancing antibacterial activity and air filtration performance in electrospun hybrid air filters of chitosan (CS)/AgNPs/PVA/cellulose acetate: Effect of CS/AgNPs ratio. Sep Purif Technol. 2024;338:126515. doi: 10.1016/j.seppur.2024.126515

 

  1. Zhu M, Xiong R, Huang C. Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydr Polym. 2019;205:55-62. doi: 10.1016/j.carbpol.2018.09.075

 

  1. Zhang L, Li L, Wang L, Nie J, Ma G. Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Appl Surf Sci. 2020;515:145962. doi: 10.1016/j.apsusc.2020.145962

 

  1. Bai J, Li Y, Yang S, et al. A simple and effective route for the preparation of poly(vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method. Solid State Commun. 2007;141(5):292-295. doi: 10.1016/j.ssc.2006.10.024

 

  1. Sobolčiak P, Ali A, Hassan MK, et al. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS One. 2017;12(8):e0183705. doi: 10.1371/journal.pone.0183705

 

  1. Yoon SK, Pahn LO, Kyun JJ, Cho SH. Fabrication of air conditioning antimicrobial filter for electrically powered port tractors via electrospinning coating. Coatings. 2024;14(2):180. doi: 10.3390/coatings14020180

 

  1. Gule NP, De Kwaadsteniet M, Cloete TE, Klumperman B. Electrospun poly(vinyl alcohol) nanofibres with biocidal additives for application in filter media, 2-antimicrobial activity, regeneration, leaching and water stability. Macromol Mater Eng. 2012;297(7):618-626. doi: 10.1002/mame.201100276

 

  1. Muniz NO, Gabut S, Maton M, et al. Electrospun filtering membrane designed as component of self-decontaminating protective masks. Nanomaterials (Basel). 2022;13(1):9. doi: 10.3390/nano13010009

 

  1. P Libel G, Facchi SP, De Almeida DA, et al. Cross-linked poly(vinyl alcohol)/citric acid electrospun fibers containing imidazolium ionic liquid with enhanced antiadhesive and antimicrobial properties. Mater Chem Phys. 2024;316:129087. doi: 10.1016/j.matchemphys.2024.129087

 

  1. Park JA, Kim SB. Antimicrobial filtration with electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: Immersion, leaching, toxicity, and filtration tests. Chemosphere. 2017;167:469-477. doi: 10.1016/j.chemosphere.2016.10.030

 

  1. Purwar R, Sai Goutham K, Srivastava CM. Electrospun Sericin/PVA/ Clay nanofibrous mats for antimicrobial air filtration mask. Fibers Polym. 2016;17(8):1206-1216. doi: 10.1007/s12221-016-6345-7

 

  1. Ju Y, Han T, Yin J, et al. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property. Sci Total Environ. 2021;777:145768. doi: 10.1016/j.scitotenv.2021.145768

 

  1. Jiang Z, Zhang H, Zhu M, et al. Electrospun soy‐protein‐based nanofibrous membranes for effective antimicrobial air filtration. J Appl Polym Sci. 2018;135(8):45766. doi: 10.1002/app.45766

 

  1. Chaudhary A, Gupta A, Mathur RB, Dhakate S. Effective antimicrobial filter from electrospun polyacrylonitrile-silver composite nanofibers membrane for conductive environments. Adv Mater Lett. 2014;5(10):562-568. doi: 10.5185/amlett.2014.572

 

  1. Bortolassi ACC, Nagarajan S, De Araújo Lima B, et al. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater Sci Eng C. 2019;102:718-729. doi: 10.1016/j.msec.2019.04.094

 

  1. Lee SY, Shin JH, Kim IH, et al. Transparent and visible light-activated antimicrobial air filters from electrospun crystal violet-embedded polyacrylonitrile nanofibers. Environ Res. 2025;266:120490. doi: 10.1016/j.envres.2024.120490

 

  1. Devi R, Kumar M, Singh J, Randhawa JK, Kaur N, Singh N. Electrospun nanofibers with antibacterial and antioxidant activities for air purification. ACS Appl Nano Mater. 2025;8(11):5513-5526. doi: 10.1021/acsanm.4c07222

 

  1. Choi J, Yang BJ, Bae GN, Jung JH. Herbal extract incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration. ACS Appl Mater Interfaces. 2015;7(45):25313-25320. doi: 10.1021/acsami.5b07441

 

  1. Zhu M, Cao Q, Liu B, et al. A novel cellulose acetate/poly (ionic liquid) composite air filter. Cellulose. 2020;27(7):3889-3902. doi: 10.1007/s10570-020-03034-8

 

  1. Surendranath M, Ramesan RM, Nair P, Parameswaran R. Zein and 3-aminophenyl boronic acid conjugated polyvinylpyrrolidone polymer blend: Electrospinning, characterization, and mucoadhesive drug delivery. ACS Appl Bio Mater. 2024;7(11):7429-7443. doi: 10.1021/acsabm.4c01052

 

  1. Sumam P, Parameswaran R. Neuronal cell response on aligned fibroporous electrospun mat generated from silver ion complexed ethylene vinyl alcohol copolymer. J Biomed Mater Res B Appl Biomater. 2023;111(4):782-794. doi: 10.1002/jbm.b.35189

 

  1. Velutheril Thomas L, Nair PD. An electrospun citric acid modified polyvinyl alcohol scaffold for vascular tissue engineering. J Bioact Compat Polym. 2019;34(3):263-279. doi: 10.1177/0883911519841390

 

  1. Chen S, Xie Y, Ma K, et al. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater. 2024;42:478-518. doi: 10.1016/j.bioactmat.2024.09.003
Share
Back to top