Thermally guided solvent-induced porous bioabsorbable microspheres: Molecular structure and performance
The microstructure of biodegradable microspheres plays a crucial role in determining their properties, particularly in drug delivery behavior and biological effects. In this study, we developed a thermally guided, solvent–emulsion protocol to produce porous microspheres without the use of porogens. We elucidated how polymer crystallinity and chain mobility dictate pore genesis. This method employs basic stirring equipment and enables the fabrication of microspheres with superior shape uniformity, making it suitable for continuous scale-up from the laboratory to industrial production. By precisely controlling the processing temperature, we produced microspheres with different morphologies, including well-defined porous structures. The structural effects of poly(caprolactone), poly(D, L-lactic acid), and poly(L-lactic acid) on microsphere morphology were systematically investigated. The results revealed distinct molecular configurations and flexibilities among these polymers. Compared to crystalline poly(L-lactic acid), amorphous poly(D, L-lactic acid) displayed a wrinkled surface, whereas the more flexible poly(caprolactone) yielded smaller pore sizes. The interconnected porous structure of the microspheres supported slower degradation by inhibiting self-catalysis, which typically accelerates the degradation process. This porous structure enabled effective loading of simvastatin and achieved sustained release, with approximately 70% of the drug released within 1 month. This study establishes a scalable, additive-free platform for programming microsphere porosity through polymer selection and processing temperature. This approach offers precise control over degradation and hydrophobic drug release, making it highly promising for injectable tissue engineering and minimally invasive therapies. Future studies should focus on exploring the in vivo performance of these microspheres in relevant therapeutic models.
- Li G, Zhao MH, Xu F, et al. Synthesis and biological application of polylactic acid. Molecules. 2020;25(21):5023. doi: 10.3390/molecules25215023
- Bartnikowsk M, Dargaville TR, Ivanovski S, Hutmacher D. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci. 2019;96:1-20. doi: 10.1016/j.progpolymsci.2019.05.004
- Dias JR, Sousa A, Augusto A, Bártolo PJ, Granja PL. Electrospun polycaprolactone (PCL) degradation: An in vitro and in vivo study. Polymers (Basel). 2022;14(16):3397. doi: 10.3390/polym14163397
- Gu B, Sun X, Papadimitrakopoulos F, Burgess DJ. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites. J Control Release. 2016;228:170-178. doi: 10.1016/j.jconrel.2016.03.011
- Yang M, Abdalkarim SYH, Yu HY, Asad RAM, Ge D, Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics. Carbohydr Polym. 2023;301:120350. doi: 10.1016/j.carbpol.2022.120350
- Chen Y, He Q, Lu H, et al. Visualization and correlation of drug release of risperidone/clozapine microspheres in vitro and in vivo based on FRET mechanism. Int J Pharm. 2024;653:123885. doi: 10.1016/j.ijpharm.2024.123885
- Qiao L, Deng F, Hu X, et al. Dual sustained-release PTMC/PCL porous microspheres for lipid-soluble drugs. Colloids Surfaces A Physicochem Eng Aspects. 2022;650:129628. doi: 10.1016/j.colsurfa.2022.129628
- Li Y, Zha Y, Hu W, et al. Monoporous microsphere as a dynamically movable drug carrier for osteoporotic bone remodeling. Adv Healthcare Mater. 2023;12:e2201242. doi: 10.1002/adhm.202201242
- Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater. 2020;5:61-81. doi: 10.1038/s41578-019-0150-z
- He C, Yu B, Lv Y, et al. Biomimetic asymmetric composite dressing by electrospinning with aligned nanofibrous and micropatterned structures for severe burn wound healing. ACS Appl Mater Interfaces. 2022;14:32799-32812. doi: 10.1021/acsami.2c04323
- Lu L, Li Z, Guo Y, Zhang K, Mi WD, Liu J. Preparation of uniform-sized GeXIVA[1,2]-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency. Drug Deliv. 2022;29:2283-2295. doi: 10.1080/10717544.2022.2089297
- Xu QX, Chin SE, Wang CH, Pack DW. Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials. 2013;34:3902-3911. doi: 10.1016/j.biomaterials.2013.02.015
- Na XM, Zhou WQ, Li T, Hong D, Li J, Ma G. Preparation of double-emulsion-templated microspheres with controllable porous structures by premix membrane emulsification. Particuology. 2019;44:22-27. doi: 10.1016/j.partic.2018.07.007
- Han JH, Kim CM, Tae-Hyun K, Jin SW, Kim GM. Development of In situ microfluidic system for preparation of controlled porous microsphere for tissue engineering. Pharmaceutics. 2022;14:2345. doi: 10.3390/pharmaceutics14112345
- Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv. 2021;28:1397-1418. doi: 10.1080/10717544.2021.1938756
- Dastidar DG, Saha S, Chowdhury M. Porous microspheres: Synthesis, characterisation and applications in pharmaceutical & medical fields. Int J Pharmaceut. 2018;548(1):34-48. doi: 10.1016/j.ijpharm.2018.06.015
- Blaker J, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater. 2008;4(2):264-272. doi: 10.1016/j.actbio.2007.09.011
- Xu J, Bai Y, Li X, et al. Porous core/dense shell PLA microspheres embedded with high drug loading of bupivacaine crystals for injectable prolonged release. AAPS PharmSciTech. 2021;22:27. doi: 10.1208/s12249-020-01878-8
- Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Control Release. 2000;69:81-96. doi: 10.1016/S0168-3659(00)00291-1
- Hu X, He J, Yong X, et al. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf B Biointerfaces. 2020;195:111218. doi: 10.1016/j.colsurfb.2020.111218
- Roberts CT, Beck SK, Prejean CM, Graul LM, Maitland DJ, Grunlan MA. Star-PCL shape memory polymer (SMP) scaffolds with tunable transition temperatures for enhanced utility. J Mater Chem B. 2024;12:3694-3702. doi: 10.1039/D4TB00050A
- Luo C, Liu S, Luo W, et al. Fabrication of PLCL block polymer with tunable structure and properties for biomedical application. Macromol Biosci. 2023;23:e2200507. doi: 10.1002/mabi.202200507
- Pan Y, Li B, Sun X, et al. Composite hydrogel containing collagen-modified polylactic acid-hydroxylactic acid copolymer microspheres loaded with tetramethylpyrazine promotes articular cartilage repair. Macromol Biosci. 2024;24:e2400003. doi: 10.1002/mabi.202400003
- Ding H, Tan P, Fu S, et al. Preparation and application of pH-responsive drug delivery systems. J Control Release. 2022;348:206-238. doi: 10.1016/j.jconrel.2022.05.056
- Liang Y, Li M, Yang Y, Qiao LP, Xu HR, Guo BL. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022;16:3194-3207. doi: 10.1021/acsnano.1c11040
- He X, Liu J, Song T, et al. Effects of water-soluble additive on the release profile and pharmacodynamics of triptorelin loaded in PLGA microspheres. Drug Dev Ind Pharm. 2023;49:357-366. doi: 10.1080/03639045.2023.2214822
- Sousa AM, Amaro AM, Piedade AP. 3D printing of polymeric bioresorbable stents: A strategy to improve both cellular compatibility and mechanical properties. Polymers (Basel). 2022;14:1099. doi: 10.3390/polym14061099
- Ji H, Zhao Y, Yu X, Fang WB. Effect of graphene oxide/hydroxyapatite fine-grained AZ91D on blood compatibility and cytocompatibility. J Mater Sci. 2022;57:15008-15015. doi: 10.1007/s10853-022-07565-2
- Cai P, Lu S, Yu J, et al. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact Mater. 2023;21:267-283. doi: 10.1016/j.bioactmat.2022.08.009
- Lu S, Chen W, Wang J, et al. Polydopamine-decorated PLCL conduit to induce synergetic effect of electrical stimulation and topological morphology for peripheral nerve regeneration. Small Methods. 2023;7:2200883. doi: 10.1002/smtd.202200883
- Fu Y, Lian R, Lin A, Xu MY, Li YL. Fabrication of novel flower-bundle microspheres via an inverse-emulsion freezing-phase-separation technology. Mater Lett. 2022;327:132865. doi: 10.1016/j.matlet.2022.132865
- Wang X, Tang Y, Zhu X, Zhou YM, Hong XH. Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films. Int J Biol Macromol. 2020;146:1069-1075. doi: 10.1016/j.ijbiomac.2019.09.233
- Kang EY, Lih E, Kim IH, Joung YK, Han DK. Effects of poly(L-lactide- ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Biomater Res. 2016;20:7. doi: 10.1186/s40824-016-0054-6
- Shi J, Zhang J, Zhang Y, et al. Crystallinity dependence of PLLA hydrophilic modification during alkali hydrolysis. Polymers (Basel). 2023;15:75. doi: 10.3390/polym15010075
- Vasiukhina A, Gad SF, Wellington EN, Wilmes DM, Yeo Y, Solorio L. PLA-PCL microsphere formulation to deter abuse of prescription opioids by smoking. Int J Pharm. 2022;626:122151.doi: 10.1016/j.ijpharm.2022.122151
- Wang K, Wang R, Hu K, Ma Z, Zhang C, Sun X. Crystallization-driven formation poly (l-lactic acid)/poly (d-lactic acid)-polyethylene glycol-poly (l-lactic acid) small-sized microsphere structures by solvent-induced self-assembly. Int J Biol Macromol. 2024;254:127924. doi: 10.1016/j.ijbiomac.2023.127924
- Pochivalov KV, Basko AV. Formation of porous microspheres from semicrystalline polymer solutions: Siffusion-controlled and local phase separation. Polym Plast Technol Mater. 2022;61:1279-1291. doi: 10.1080/25740881.2022.2056051
- Lee J, Sah H. Preparation of PLGA nanoparticles by milling spongelike PLGA microspheres. Pharmaceutics. 2022;14:1540. doi: 10.3390/pharmaceutics14081540
- Lv C, Wang F, He C, Kang JL, He XX, Li Z. Preparation of silicone- PCL composite particles with hierarchical structure and the super-hydrophobic fabrics via directly electrostatic spraying. Surf Coat Technol. 2022;449:128933. doi: 10.1016/j.surfcoat.2022.128933
- Huang X, Li J, Yang Y, et al. Lipid-assisted PEG-b-PLA nanoparticles with ultrahigh SN38 loading capability for efficient cancer therapy. Biomater Sci. 2023;11:7445-7457. doi: 10.1039/D3BM01469J
- Staal A, Frith JC, French MH, et al. The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG‐CoA reductase activity. J Bone Miner Res. 2003;18:88-96. doi: 10.1359/jbmr.2003.18.1.88
- Cai Y, Qi J, Lu Y, He HS, Wu W. The in vivo fate of polymeric micelles. Adv Drug Deliv Rev. 2022;188:114463. doi: 10.1016/j.addr.2022.114463
