Stimuli-responsive biomaterials in three-dimensional printing: Advances in drug delivery and dynamic tissue engineering
The incorporation of advanced additive manufacturing technologies with stimuli-responsive (“smart”) biomaterials holds revolutionary potential for dynamic tissue engineering, bioengineered drug delivery, and tailored medicine. It is through these smart materials that dynamic tissue interactions and precise therapeutic responses are made possible, as they respond to physical, chemical, or biological cues such as temperature, pH, light, magnetic fields, and even enzymes. The review provides a comprehensive and in-depth overview of recent advancements in stimuli-responsive materials and their integration with specific additive manufacturing technologies, emphasizing the functional synergy between material responsiveness and fabrication capabilities. Following the International Organization for Standardization/American Society for Testing and Materials 52900 standard, additive manufacturing technologies are classified by forming principles: material extrusion, material jetting, and vat photopolymerization. Each forming principle is evaluated for its compatibility with stimuli-responsive systems, distinguishing between acellular and cell-laden bioprinting applications. This classification approach reveals how specific material responsiveness mechanisms synergize with particular fabrication processes to optimize precision drug delivery and regenerative tissue design. Representative smart biomaterial systems, including thermoresponsive, pH-sensitive, photoreactive, magnetically responsive, and enzyme-responsive polymers, are discussed with emphasis on their mechanisms and biomedical applications. Distinctive devices, including multi-drug delivery systems with tunable release, shape-memory implants, and stimuli-responsive scaffolds for a dynamic tissue environment, are evaluated with respect to performance and translational potential. An overview of current limitations, such as clinical scalability, regulatory hurdles, and environmental sustainability, and strategic future perspectives, including the use of artificial intelligence in print path optimization, integration with biosensors, and multi-responsive constructs, is provided with a critical outlook. The synthesis of cross-disciplinary knowledge aims to inform the design of personalized, responsive, and clinically translational biomedical solutions.
- Tapeinos C, Larrañaga A, Tomatis F, et al. Advanced functional materials and cell-based therapies for the treatment of ischemic stroke and postischemic stroke effects. Adv Funct Mater. 2020;30(1):1906283. doi: 10.1002/adfm.201906283
- Maruf A, Wang Y, Yin T, et al. Atherosclerosis treatment with stimuli-responsive nanoagents: Recent advances and future perspectives. Adv Healthc Mater. 2019;8(11):e1900036. doi: 10.1002/adhm.201900036
- Gelmi A, Schutt CE. Stimuli-responsive biomaterials: Scaffolds for stem cell control. Adv Healthc Mater. 2021;10(1):e2001125. doi: 10.1002/adhm.202001125
- Badeau BA, Deforest CA. Programming stimuli-responsive behavior into biomaterials. Annu Rev Biomed Eng. 2019;21:241-265. doi: 10.1146/annurev-bioeng-060418-052324
- Zhang K, Wang S, Zhou C, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6(1):31. doi: 10.1038/s41413-018-0032-9
- Chu S, Shi X, Tian Y, Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front Oncol. 2022;12:855019. doi: 10.3389/fonc.2022.855019
- Teotia AK, Sami H, Kumar A. Switchable and responsive surfaces and materials for biomedical applications thermo-responsive polymers: Structure and design of smart materials. In: Switchable and Responsive Surfaces and Materials for Biomedical Applications. Netherlands: Elsevier; 2015.
- Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl Mater Interfaces. 2016;8(33):21107-21133. doi: 10.1021/acsami.6b00371
- Knipe JM, Peppas NA. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater. 2014;1(1):57-65. doi: 10.1093/rb/rbu006
- Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Multi-stimuli-responsive polymeric materials. Chemistry. 2015;21(38):13164-13174. doi: 10.1002/chem.201501101
- Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10(10):4557-4588. doi: 10.7150/thno.38069
- Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011
- Choong YYC, Tan HW, Patel DC, et al. The global rise of 3D printing during the COVID-19 pandemic. Nat Rev Mater. 2020;5(9):637-639. doi: 10.1038/s41578-020-00234-3
- Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25(2):263-269. doi: 10.1038/s41591-018-0296-z
- Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health J. 2022;6(4). doi: 10.1016/j.glohj.2022.11.001
- Mani MP, Sadia M, Jaganathan SK, et al. A review on 3D printing in tissue engineering applications. J Polym Eng. 2022;42(3):243-265. doi: 10.1515/polyeng-2021-0059
- Tracy T, Wu L, Liu X, Cheng S, Li X. 3D printing: Innovative solutions for patients and pharmaceutical industry. Int J Pharm. 2023;631:122480. doi: 10.1016/j.ijpharm.2022.122480
- Mahajan N, Yoo JJ, Atala A. Bioink materials for translational applications. MRS Bull. 2022;47(1): 1-12. doi: 10.1557/s43577-022-00268-8
- Yang H, Fang H, Wang C, et al. 3D printing of customized functional devices for smart biomedical systems. SmartMat. 2024;5(5):e1244. doi: 10.1002/smm2.1244
- Afsana, Jain V, Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des. 2019;24(42):5062-5071. doi: 10.2174/1381612825666190215122208
- Aho J, Bøtker JP, Genina N, Edinger M, Arnfast L, Rantanen J. Roadmap to 3D-printed oral pharmaceutical dosage forms: Feedstock filament properties and characterization for fused deposition modeling. J Pharm Sci. 2019;108(1):26-35. doi: 10.1016/j.xphs.2018.11.012
- ISO/ASTM. International Standard ISO/ASTM 52900: (E) Additive Manufacturing -General Principles -Fundamentals and Vocabulary. Switzerland: International Organization for Standardization; 2021.
- Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Controll Release. 2015;217:308-314. doi: 10.1016/j.jconrel.2015.09.028
- Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/ organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
- Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D printing for drug delivery applications. Pharmaceutics. 2022;14(1):145. doi: 10.3390/pharmaceutics14010145
- Borandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev. 2021;173:349-373. doi: 10.1016/j.addr.2021.03.022
- Ramadan Q, Zourob M. 3D Bioprinting at the frontier of regenerative medicine, pharmaceutical, and food industries. Front Med Technol. 2020;2:607648. doi: 10.3389/fmedt.2020.607648
- Muzzio N, Moya S, Romero G. Multifunctional scaffolds and synergistic strategies in tissue engineering and regenerative medicine. Pharmaceutics. 2021;13(6):792. doi: 10.3390/pharmaceutics13060792
- Han F, Wang J, Ding L, et al. Tissue engineering and regenerative medicine: Achievements, future, and sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83. doi: 10.3389/fbioe.2020.00083
- Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev. 2013;42(17):7468-7483. doi: 10.1039/c2cs35191a
- Owens DE, Jian Y, Fang JE, Slaughter BV, Chen YH, Peppas NA. Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules. 2007;40(20):7306-7310. doi: 10.1021/ma071089x
- Kim YJ, Matsunaga YT. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B. 2017;5(23):4307-4321. doi: 10.1039/c7tb00157f
- Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers - A new route towards creating a sustainable environment. RSC Adv. 2014;4(95):53352-53364. doi: 10.1039/c4ra10631h
- Phillips DJ, Gibson MI. Towards being genuinely smart: “Isothermally-responsive” polymers as versatile, programmable scaffolds for biologically-adaptable materials. Polym Chem. 2015;6(7):1033-1043. doi: 10.1039/c4py01539h
- Kobayashi J, Nakayama M, Nagase K. Molecular design of dynamically thermoresponsive biomaterials. Sci Technol Adv Mater. 2025;26(1):2475736. doi: 10.1080/14686996.2025.2475736
- Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem. 2022;10:946183. doi: 10.3389/fchem.2022.946183
- Papadakis CM, Niebuur BJ, Schulte A. Thermoresponsive polymers under pressure with a focus on poly(N-isopropylacrylamide) (PNIPAM). Langmuir. 2024;40(1):1-20. doi: 10.1021/acs.langmuir.3c02398
- Muttaqien S El, Nomoto T, Dou X, Takemoto H, Matsui M, Nishiyama N. Photodynamic therapy using LCST polymers exerting pH-responsive isothermal phase transition. J Control Release. 2020;328:608-616. doi: 10.1016/j.jconrel.2020.09.036
- Ebara M, Yamato M, Hirose M, et al. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules. 2003;4(2):344-349. doi: 10.1021/bm025692t
- Xing Y, Qiu L, Liu D, Dai S, Sheu CL. The role of smart polymeric biomaterials in bone regeneration: A review. Front Bioeng Biotechnol. 2023;11:1240861. doi: 10.3389/fbioe.2023.1240861
- Ansari MJ, Rajendran RR, Mohanto S, et al. Poly(N-isopropylacrylamide)- based hydrogels for biomedical applications: A review of the state-of-the-art. Gels. 2022;8(7):454. doi: 10.3390/gels8070454
- Lanzalaco S, Armelin E. Poly(N-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications. Gels. 2017;3(4):36. doi: 10.3390/gels3040036
- Raheem A, Mandal K, Biswas S, et al. Smart biomaterials in healthcare: Breakthroughs in tissue engineering, immunomodulation, patient-specific therapies, and biosensor applications. Appl Phys Rev.American Institute of Physics. 2025;12(1):011333. doi: 10.1063/5.0238817
- Chatterjee S, Hui PCL. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems. Polymers (Basel). 2021;13(13):2086. doi: 10.3390/polym13132086
- Niskanen J, Tenhu H. How to manipulate the upper critical solution temperature (UCST)? Polym Chem. 2017;8(1):220-232. doi: 10.1039/c6py01612j
- Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34-45. doi: 10.1016/j.ejpb.2007.02.025
- Liu J, Huang Y, Kumar A, et al. PH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693-710. doi: 10.1016/j.biotechadv.2013.11.009
- Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-responsive drug release from smart polymers. J Funct Biomater. 2019;10(3):34. doi: 10.3390/jfb10030034
- Webber MJ, Langer R. Drug delivery by supramolecular design. Chem Soc Rev. 2017;46(21):6600-6620. doi: 10.1039/c7cs00391a
- Herrmann A. Dynamic combinatorial/covalent chemistry: A tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev. 2014;43(6):1899-1933. doi: 10.1039/c3cs60336a
- Ulrich S. Growing prospects of dynamic covalent chemistry in delivery applications. Acc Chem Res. 2019;52(2):510-519. doi: 10.1021/acs.accounts.8b00591
- Thambi T, Deepagan VG, Yoo CK, Park JH. Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer (Guildf). 2011;52(21):8251-8259. doi: 10.1016/j.polymer.2011.08.024
- Li J, Zhang X, Zhao M, et al. Tumor-pH-sensitive PLLA-based microsphere with acid cleavable acetal bonds on the backbone for efficient localized chemotherapy. Biomacromolecules. 2018;19(7):3140-3148. doi: 10.1021/acs.biomac.8b00734
- Cai S, Thati S, Bagby TR, et al. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control Release. 2010;146(2):212-218. doi: 10.1016/j.jconrel.2010.04.006
- Liu B, Chen H, Li X, et al. PH-responsive flower-like micelles constructed via oxime linkage for anticancer drug delivery. RSC Adv. 2014;4(90):48943-48951. doi: 10.1039/c4ra08719d
- Qi P, Wu X, Liu L, Yu H, Song S. Hydrazone-containing triblock copolymeric micelles for pH-controlled drug delivery. Front Pharmacol. 2018;9:12. doi: 10.3389/fphar.2018.00012
- Tao Y, Liu S, Zhang Y, Chi Z, Xu J. A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior. Polym Chem. 2018;9(7):878-884. doi: 10.1039/c7py02108a
- Shi Z, Li Q, Mei L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin Chem Lett. 2020;31(6):1345-1356. doi: 10.1016/j.cclet.2020.03.001
- Gupta P, Vermani K, Garg S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569-579. doi: 10.1016/S1359-6446(02)02255-9
- Mukhopadhyay P, Sarkar K, Bhattacharya S, Bhattacharyya A, Mishra R, Kundu PP. PH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr Polym. 2014;112:627-637. doi: 10.1016/j.carbpol.2014.06.045
- Mo R, Sun Q, Xue J, et al. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Advanced Materials. 2012;24(27):3659-3665. doi: 10.1002/adma.201201498
- Deng H, Liu J, Zhao X, et al. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Biomacromolecules. 2014;15(11):4281-4291. doi: 10.1021/bm501290t
- Sahoo SK, Crisponi G. Recent advances on iron(III) selective fluorescent probes with possible applications in bioimaging. Molecules. 2019;24(18):3267. doi: 10.3390/molecules24183267
- Du W, Liu X, Liu L, Lam JWY, Tang BZ. Photoresponsive polymers with aggregation-induced emission. ACS Appl Polym Mater. 2021;3(5):2290-2309. doi: 10.1021/acsapm.1c00182
- Diana R, Panunzi B, Shikler R, Nabha S, Caruso U. Highly efficient dicyano-phenylenevinylene fluorophore as polymer dopant or zinc-driven self-assembling building block. Inorg Chem Commun. 2019;104:145-149. doi: 10.1016/j.inoche.2019.04.007
- Pearson S, Feng J, del Campo A. Lighting the path: Light delivery strategies to activate photoresponsive biomaterials in vivo. Adv Funct Mater. 2021;31(50):2105989. doi: 10.1002/adfm.202105989
- Hartley GS. The cis-form of azobenzene. Nature. 1937;140(3537):281. doi: 10.1038/140281a0
- Di Martino M, Sessa L, Di Matteo M, Panunzi B, Piotto S, Concilio S. Azobenzene as antimicrobial molecules. Molecules. 2022;27(17):5643. doi: 10.3390/molecules27175643
- Jerca FA, Jerca VV, Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem. 2022;6(1):51-69. doi: 10.1038/s41570-021-00334-w
- Diana R, Caruso U, Piotto S, Concilio S, Shikler R, Panunzi B. Spectroscopic behaviour of two novel azobenzene fluorescent dyes and their polymeric blends. Molecules. 2020;25(6):1368. doi: 10.3390/molecules25061368
- Echeverria C, Fernandes SN, Godinho MH, Borges JP, Soares PIP. Functional stimuli-responsive gels: Hydrogels and microgels. Gels. 2018;4(2):1368. doi: 10.3390/gels4020054
- Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. J Photochem Photobiol C Photochem Rev. 2022;51:100487. doi: 10.1016/j.jphotochemrev.2022.100487
- Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev. 2021;50(22):12377-12449. doi: 10.1039/d0cs00547a
- Zhang X, Wang B, Zheng Z, Yang G, Zhang C, Liao L. A robust photoswitchable dual-color fluorescent poly (vinyl alcohol) composite hydrogel constructed by photo-responsive FRET effect. Dyes Pigments. 2022;208:12377-12449. doi: 10.1016/j.dyepig.2022.110800
- Irie M. Diarylethenes for memories and switches. Chem Rev. 2000;100(5):1685-1716. doi: 10.1021/cr980069d
- Cheng HB, Zhang S, Bai E, et al. Future-oriented advanced diarylethene photoswitches: From molecular design to spontaneous assembly systems. Adv Mater. 2022;34(16):2108289. doi: 10.1002/adma.202108289
- Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem Rev. 2014;114(24):12174-1277. doi: 10.1021/cr500249p
- Chen Z, Chen T, Guo B, Yang F. Advances in photo-responsive hydrogel integrated with biomedical materials for antitumor applications. Eur Polym J. 2024;220:113431. doi: 10.1016/j.eurpolymj.2024.113431
- Pichon R, Le Saint J, Courtot P. Photoisomerisation d’arylhydrazones-2 de dicetones-1,2 substituees en 2. Mecanisme d’isomerisation thermique de la double liaison CN. Tetrahedron. 1981;37(8):1517-1524. doi: 10.1016/S0040-4020(01)92091-5
- Xu F, Feringa BL. Photoresponsive supramolecular polymers: From light-controlled small molecules to smart materials. Adv Mater. 2023;35(10):e2204413. doi: 10.1002/adma.202204413
- Guo X, Shao B, Zhou S, Aprahamian I, Chen Z. Visualizing intracellular particles and precise control of drug release using an emissive hydrazone photochrome. Chem Sci. 2020;11(11):3016-3021. doi: 10.1039/c9sc05321b
- Tishin AM. Magnetic Materials and Technologies for Medical Applications. United Kingdom: Woodhead Publishing; 2021. doi: 10.1016/B978-0-12-822532-5.00023-6
- Ari Adi W, Yunasfi Y, Mashadi M, et al. Metamaterial: Smart magnetic material for microwave absorbing material. In: Electromagnetic Fields and Waves. London: Intechopen; 2019. doi: 10.5772/intechopen.84471
- Liu H, Wang C, Gao Q, Liu X, Tong Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater. 2010;6(1):275-281. doi: 10.1016/j.actbio.2009.06.018
- Sarkar N, Sahoo G, Swain SK. Graphene quantum dot decorated magnetic graphene oxide filled polyvinyl alcohol hybrid hydrogel for removal of dye pollutants. J Mol Liq. 2020;302:112591. doi: 10.1016/j.molliq.2020.112591
- Liao J, Huang H. Green magnetic hydrogels synthesis, characterization and flavourzyme immobilization based on chitin from Hericium erinaceus residue and polyvinyl alcohol. Int J Biol Macromol. 2019;138:462-472. doi: 10.1016/j.ijbiomac.2019.07.038
- Castro PS, Bertotti M, Naves AF, et al. Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation. Colloids Surf B Biointerfaces. 2017;156:388-396. doi: 10.1016/j.colsurfb.2017.05.046
- Lin F, Zheng J, Guo W, et al. Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release. Cellulose. 2019;26(11):6861-6877. doi: 10.1007/s10570-019-02572-0
- Burke NAD, Stöver HDH, Dawson FP. Magnetic nanocomposites: Preparation and characterization of polymer-coated iron nanoparticles. Chem Mater. 2002;14(11):4752-4761. doi: 10.1021/cm020126q
- Shou Y, Le Z, Cheng HS, et al. Mechano-activated cell therapy for accelerated diabetic wound healing. Adv Mater. 2023;35(47):e2304638. doi: 10.1002/adma.202304638
- Fantechi E, Innocenti C, Zanardelli M, et al. A smart platform for hyperthermia application in cancer treatment: Cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano. 2014;8(5):4705-4719. doi: 10.1021/nn500454n
- Zhu Y, Zhang B, Gu J, Li S. Magnetic beads separation characteristics of a microfluidic bioseparation chip based on magnetophoresis with lattice-distributed soft magnets. J Magn Magn Mater. 2020;501:166485. doi: 10.1016/j.jmmm.2020.166485
- Li K, Xu J, Li P, Fan Y. A review of magnetic ordered materials in biomedical field: Constructions, applications and prospects. Compos B Eng. 2022;228:109401. doi: 10.1016/j.compositesb.2021.109401
- Fukami T, Yokoi T. The emerging role of human esterases. Drug Metab Pharmacokinet. 2012;27(5). doi:10.2133/dmpk.DMPK-12-RV-042
- Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev. 2012;41(18):5933-5949. doi: 10.1039/c2cs35103j
- Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV. Enzyme responsive materials: Design strategies and future developments. Biomater Sci. 2013;1(1):11-39. doi: 10.1039/c2bm00041e
- Distler T, McDonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and enzymatically dual cross-linked oxidized alginate gelatin hydrogels with tunable stiffness and degradation behavior for tissue engineering. ACS Biomater Sci Eng. 2020;6(7):3899-3914. doi: 10.1021/acsbiomaterials.0c00677
- Fuchsbauer HL, Gerber U, Engelmann J, Seeger T, Sinks C, Hecht T. Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using beta-galactosidase as model system. Biomaterials. 1996;17(15):1481-1488. doi: 10.1016/0142-9612(96)89772-9
- Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules. 1997;30(18):5255-5264. doi: 10.1021/ma970345a
- Thornton PD, Heise A. Bio-functionalisation to enzymatically control the solution properties of a self-supporting polymeric material. Chem Commun. 2011;47(11):3108-3110. doi: 10.1039/c0cc03647a
- Sakai S, Kawakami K. Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater. 2007;3(4):495-501. doi: 10.1016/j.actbio.2006.12.002
- Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun (Camb). 2005;34:4312-4314. doi: 10.1039/b506989k
- Garripelli VK, Kim JK, Son S, Kim WJ, Repka MA, Jo S. Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater. 2011;7(5):1984-1992. doi: 10.1016/j.actbio.2011.02.005
- Kurisawa M, Terano M, Yui N. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network. J Biomater Sci Polym Ed. 1997;8(9):691-708. doi: 10.1163/156856297X00506
- Yamamoto N, Kurisawa M, Yui N. Double-stimuli-responsive degradable hydrogels: Interpenetrating polymer networks consisting of gelatin and dextran with different phase separation. Macromol Rapid Commun. 1996;17(5):191-200. doi: 10.1002/marc.1996.030170505
- Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules. 2003;4(3):713-722. doi: 10.1021/bm025744e
- Hovgaard L, Brøndsted H. Dextran hydrogels for colon-specific drug delivery. J Control Release. 1995;36(1-2):159-166. doi: 10.1016/0168-3659(95)00049-E
- Plunkett KN, Berkowski KL, Moore JS. Chymotrypsin responsive hydrogel: Application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules. 2005;6(2):632-637. doi: 10.1021/bm049349v
- Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials. 2001;22(22):3045-3051. doi: 10.1016/S0142-9612(01)00051-5
- Zhang M, Song CC, Du FS, Li ZC. Supersensitive oxidation-responsive biodegradable PEG hydrogels for glucose-triggered insulin delivery. ACS Appl Mater Interfaces. 2017;9(31):25905-25914. doi: 10.1021/acsami.7b08372
- Zhang X, Xu B, Puperi DS, et al. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater. 2015;14:11-21. doi: 10.1016/j.actbio.2014.11.042
- Ju J, Lee IC, Li YCE. Editorial: Stimuli-responsive smart materials for biomedical applications. Front Bioeng Biotechnol. 2022;10:1020923. doi: 10.3389/fbioe.2022.1020923
- Xue L, Sun J. Magnetic hydrogels with ordered structure for biomedical applications. Front Chem. 2022;10:1040492. doi: 10.3389/fchem.2022.1040492
- Kristiawan RB, Imaduddin F, Ariawan D, Ubaidillah, Arifin Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021;11(1):639-649. doi: 10.1515/eng-2021-0063
- Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater Today Chem. 2020;16:100248. doi: 10.1016/j.mtchem.2020.100248
- Lalegani Dezaki M, Mohd Ariffin MKA, Hatami S. An overview of fused deposition modelling (FDM): Research, development and process optimisation. Rapid Prototyp J. 2021;27(3). doi: 10.1108/RPJ-08-2019-0230
- Przekop RE, Gabriel E, Pakuła D, Sztorch B. Liquid for fused deposition modeling technique (L-FDM)-a revolution in application chemicals to 3D printing technology: Color and elements. Appl Sci (Switzerland). 2023;13(13):7393. doi: 10.3390/app13137393
- Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol. 2019;102(9-12):2877-2889. doi: 10.1007/s00170-019-03332-x
- Tibbits S. 4D printing: Multi-material shape change. Arch Des. 2014;84(1):116-121. doi: 10.1002/ad.1710
- Wickramasinghe S, Do T, Tran P. FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers (Basel). 2020;12(7):1529. doi: 10.3390/polym12071529
- Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L. Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab. 2016;132:97-108. doi: 10.1016/j.polymdegradstab.2016.03.037
- Li Z, Souza LR de, Litina C, Markaki AE, Al-Tabbaa A. A novel biomimetic design of a 3D vascular structure for self-healing in cementitious materials using Murray’s law. Mater Des. 2020;190:108572. doi: 10.1016/j.matdes.2020.108572
- Wu W, Deconinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater. 2011;23(24):H178-H183. doi: 10.1002/adma.201004625
- Huang Y, Huang Y, Zhu M, et al. Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano. 2015;9(6):6242-6251. doi: 10.1021/acsnano.5b01602
- Baniasadi H, Abidnejad R, Fazeli M, et al. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv Colloid Interface Sci. 2024;324:103095. doi: 10.1016/j.cis.2024.103095
- Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew Chem Int Ed Engl. 2011;50(7):1660-1663. doi: 10.1002/anie.201003888
- Rezaei F, Carlsson DO, Hedin Dahlstrom J, Lindh J, Johansson S. Direct ink writing of high-resolution cellulose structures. Sci Rep. 2023;13(1):22044. doi: 10.1038/s41598-023-49128-8
- Abeykoon C, Martin PJ, Kelly AL, Brown EC. A review and evaluation of melt temperature sensors for polymer extrusion. Sens Actuat A Phys. 2012;182:16-27. doi: 10.1016/j.sna.2012.04.026
- Muthu Y, Sankar P, Srinivasan J, Mohana MSR, Elumalai K. Nanoparticles, hydrogels, and stimuli-responsive systems: Controlled release strategies for growth factor delivery. Biomedical Materials and Devices. Preprint posted online; 2025. doi: 10.1007/s44174-025-00393-3
- Khoda AKMB, Ozbolat IT, Koc B. Engineered tissue scaffolds with variational porous architecture. J Biomech Eng. 2010;133(1):011001. doi: 10.1115/1.4002933
- Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157-161. doi: 10.1016/S0167-7799(03)00033-7
- Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J. 2005;11(1):9-17. doi: 10.1108/13552540510573347
- Visser J, Peters B, Burger TJ, et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5(3):035007. doi: 10.1088/1758-5082/5/3/035007
- Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A. 2010;16(8):2675-2685. doi: 10.1089/ten.tea.2009.0798
- Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28(2):113-122.doi: 10.1016/j.dental.2011.09.010
- Sonaye SY, Bohara S, Welsh BL, et al. Extrusion-based 3D bioprinting of bioactive and piezoelectric scaffolds as potential therapy for treating critical soft tissue wounds. Adv Wound Care (New Rochelle). 2024;14(3):143-158. doi: 10.1089/wound.2024.0073
- De Vos D. Suspended Extrusion-Based Bioprinting to Establish a 3D in Vitro Model of a Neural Network to Study Parkinson’s Disease Major Research Project Report; 2022.
- Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT. Thermally-controlled extrusion-based bioprinting of collagen. J Mater Sci Mater Med. 2019;30(5):55. doi: 10.1007/s10856-019-6258-2
- Mohebi MM, Evans JRG. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem. 2002;4(4):267-274. doi: 10.1021/cc010075e
- Sirringhaus H, Kawase T, Friend RH, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science (1979). 2000;290(5499):2123-2126. doi: 10.1126/science.290.5499.2123
- Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater. 2004;3(3):171-176. doi: 10.1038/nmat1073
- Lemmo AV, Rose DJ, Tisone TC. Inkjet dispensing technology: Applications in drug discovery. Curr Opin Biotechnol. 1998;9(6):615-617. doi: 10.1016/S0958-1669(98)80139-0
- Collier WA, Janssen D, Hart AL. Measurement of soluble L-lactate in dairy products using screen-printed sensors in batch mode. Biosens Bioelectron. 1996;11(10):1041-1049. doi: 10.1016/0956-5663(96)87663-9
- Hughes TR, Mao M, Jones AR, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001;19(4):342-347. doi: 10.1038/86730
- Khan S, Ali S, Bermak A. Smart manufacturing technologies for printed electronics. In: Hybrid Nanomaterials - Flexible Electronics Materials. Germany: BoD - Books on Demand; 2020. doi: 10.5772/intechopen.89377
- Moon S, Hasan SK, Song YS, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods. 2010;16(1):157-166. doi: 10.1089/ten.tec.2009.0179
- Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: Tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164-2174. doi: 10.1016/j.biomaterials.2008.12.084
- Bryant SJ, Chowdhury TT, Lee DA, Bader DL, Anseth KS. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann Biomed Eng. 2004;32(3):407-417. doi: 10.1023/B: ABME.0000017535.00602.ca
- Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59(1):63-72. doi: 10.1002/jbm.1217
- Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res. 2000;51(2): 164-171. doi: 10.1002/(SICI)1097-4636(200008)51:2<164:AID-JBM4>3.0.CO;2-W
- Kim TK, Sharma B, Williams CG, et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage. 2003;11(9):653-664. doi: 10.1016/S1063-4584(03)00120-1
- Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-1312. doi: 10.1089/ten.tea.2011.0543
- Odde DJ, Renn MJ. Laser-guided direct writing of living cells. Biotechnol Bioeng. 2000;67(3):312-318. doi: 10.1002/(SICI)1097-0290(20000205)67:3<312:AID-BIT7>3.0.CO;2-F
- Skardal A, Devarasetty M, Kang HW, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 2015;25:24-34. doi: 10.1016/j.actbio.2015.07.030
- Lozano R, Stevens L, Thompson BC, et al. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials. 2015;67:264-273. doi: 10.1016/j.biomaterials.2015.07.022
- Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ. Materials and applications of 3D printing technology in dentistry: An overview. Dent J (Basel). 2024;12(1):1. doi: 10.3390/dj12010001
- Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015;33(9):504-513. doi: 10.1016/j.tibtech.2015.06.007
- Das A, Awasthi P, Jain V, Banerjee SS. 3D printing of maxillofacial prosthesis materials: Challenges and opportunities. Bioprinting. 2023;32:e00282. doi: 10.1016/j.bprint.2023.e00282
- Swainson WK. Method, Medium and Apparatus for Producing Three- Dimensional Figure Product. Patents No. [US4238840A]; 1980.
- Herbert AJ. Solid object generation. J Appl Photogr Eng. 1982;8:185-188.
- Zheng X, Smith W, Jackson J, et al. Multiscale metallic metamaterials. Nat Mater. 2016;15(10):1100-1106. doi: 10.1038/nmat4694
- Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos B Eng. 2017;110:442-458. doi: 10.1016/j.compositesb.2016.11.034
- Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
- Bartolo PJ, Gaspar J. Metal filled resin for stereolithography metal part. CIRP Ann. 2008;57(1):235-238. doi: 10.1016/j.cirp.2008.03.124
- Whitaker M. The history of 3D printing in healthcare. Bul Royal Coll Surg Engl. 2014;96(7):228-229. doi: 10.1308/147363514x13990346756481
- Richard E, Mead B, Zlotnikov E, et al. Apparatus for Production of Three-Dimensional Objects by Stereolithography. Vol. 2. [US Patent. No. 4,575,330]; 2011.
- Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science (1979). 2015;347(6228):13491352. doi: 10.1126/science.aaa2397
- Shusteff M, Panas RM, Henriksson J, et al. Additive fabrication of 3D structures by holographic lithography. In: Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016; 2016.
- Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK. Volumetric additive manufacturing via tomographic reconstruction. Science (1979). 2019;363(6431):1075-1079. doi: 10.1126/science.aau7114
- Shusteff M, Browar AEM, Kelly BE, et al. One-step volumetric additive manufacturing of complex polymer structures. Sci Adv. 2017;3(12):eaao5496. doi: 10.1126/sciadv.aao5496
- Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater. 2011;22:43-55. doi: 10.22203/ecm.v022a04
- Menzel R, Budde D, Maier T, et al. Parylene C coating efficacy studies: Enhancing biocompatibility of 3D printed polyurethane parts for biopharmaceutical and CGT applications. ACS Appl Bio Mater. 2024;7(8):5369-5381. doi: 10.1021/acsabm.4c00561
- Nejedlá Z, Poustka D, Herma R, et al. Class II biocompatible E-Shell 300 3D printing material causes severe developmental toxicity in: Danio rerio embryos and reduced cell proliferation in vitro -implications for 3D printed microfluidics. RSC Adv. 2021;11(27):16252-16267. doi: 10.1039/d1ra00305d
- Biological Evaluation of Medical Devices-Part 18: COPYRIGHT PROTECTED DOCUMENT.; 2020. Available from: https://standards.iteh.ai/catalog/ standards/sist/4f15bb6c/0eb0/4d12/a972/2c7592c1a52a/https:// standards.iteh.ai/catalog/standards/sist [Last accessed on 2025 Dec 20].
- Krechmer JE, Phillips B, Chaloux N, et al. Chemical emissions from cured and uncured 3d-printed ventilator patient circuit medical parts. ACS Omega. 2021;6(45):30726-30733. doi: 10.1021/acsomega.1c04695
- Krkobabić M, Medarević D, Cvijić S, Grujić B, Ibrić S. Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: Impact on internal structure and drug dissolution rate. Int J Pharm. 2019;572:118790. doi: 10.1016/j.ijpharm.2019.118790
- Wu J, Zhao Z, Hamel CM, et al. Evolution of material properties during free radical photopolymerization. J Mech Phys Solids. 2018;112:25-49. doi: 10.1016/j.jmps.2017.11.018
- Montgomery SM, Hamel CM, Skovran J, Qi HJ. A reaction-diffusion model for grayscale digital light processing 3D printing. Extreme Mech Lett. 2022;53:101714. doi: 10.1016/j.eml.2022.101714
- Cheng J, Yu S, Wang R, Ge Q. Digital light processing based multimaterial 3D printing: Challenges, solutions and perspectives. Int J Extrem Manuf. 2024;6(4):42006. doi: 10.1088/2631-7990/ad4a2c
- Sekmen K, Rehbein T, Johlitz M, Lion A, Constantinescu A. Thermal analysis and shrinkage characterization of the photopolymers for DLP additive manufacturing processes. Continuum Mech Thermodyn. 2024;36(2):351-368. doi: 10.1007/s00161-022-01137-0
- Lin WS, Harris BT, Pellerito J, Morton D. Fabrication of an interim complete removable dental prosthesis with an in-office digital light processing three-dimensional printer: A proof-of-concept technique. J Prosthet Dent. 2018;120(3):331-334. doi: 10.1016/j.prosdent.2017.12.027
- Wegmüller L, Halbeisen F, Sharma N, Kühl S, Thieringer FM. Consumer vs. High-end 3D printers for guided implant surgery-an in vitro accuracy assessment study of different 3D printing technologies. J Clin Med. 2021;10(21):4894. doi: 10.3390/jcm10214894
- Tahir N, Abduo J. An in vitro evaluation of the effect of 3D printing orientation on the accuracy of implant surgical templates fabricated by desktop printer. J Prosthodont. 2022;31(9):791-798. doi: 10.1111/jopr.13485
- Edwin ER, Muthu Y, Sankar P, Deenadhayalan SS, Selvam B, Elumalai K. Supramolecular polymers in hybrid drug delivery systems: A promising platform for targeted and responsive therapeutics. In: Biomedical Materials and Devices [Preprint]; 2025. doi: 10.1007/s44174-025-00423-0
- Nguyen AK, Narayan RJ. Two-photon polymerization for biological applications. Mater Today. 2017;20(6):314-322. doi: 10.1016/j.mattod.2017.06.004
- U.S. Food and Drug Administration. Use of international standard ISO 10993-1, “biological evaluation of medical devices - part 1: Evaluation and testing within a risk management process. In: US Department of Health and Human Services Food and Drug Administration. United States: Food and Drug Administration; 2023.
- ANSI/AAMI/ISO 10993-5:2009/(R)2014; Biological Evaluation of Medical Devices -Part 5: Tests for In Vitro Cytotoxicity. Washington, D.C: Advancing Safety in Health Technology; 2009. doi: 10.2345/9781570203558.ch1
- International Organization for Standardization. Biological Evaluation of Medical Devices. Part 18, Chemical Characterization of Medical Device Materials within a Risk Management Process. London: International Organization for Standardization; 2023.
- Vijayavenkataraman S. 3D bioprinting: Challenges in commercialization and clinical translation. J 3D Print Med. 2023;7(3):A3p8. doi: 10.2217/3dp-2022-0026
- Bei H, Zhao P, Shen L, Yang Q, Yang Y. Assembled pH-responsive gastric drug delivery systems based on 3D-printed shells. Pharmaceutics. 2024;16(6):717. doi: 10.3390/pharmaceutics16060717
- Wang F, Li L, Zhu X, Chen F, Han X. Development of pH-responsive polypills via semi-solid extrusion 3D printing. Bioengineering (Basel). 2023;10(4):402. doi: 10.3390/bioengineering10040402
- Zaer M, Moeinzadeh A, Abolhassani H, et al. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach. Int J Biol Macromol. 2023;253:126808. doi: 10.1016/j.ijbiomac.2023.126808
- Eleftheriadis GK, Katsiotis CS, Bouropoulos N, Koutsopoulos S, Fatouros DG. FDM-printed pH-responsive capsules for the oral delivery of a model macromolecular dye. Pharm Dev Technol. 2020;25(4):517-523. doi: 10.1080/10837450.2019.1711396
- Rodríguez-González R, Delgado JÁ, Delgado LM, Pérez RA. Silica 3D printed scaffolds as pH stimuli-responsive drug release platform. Mater Today Bio. 2024;28:101187. doi: 10.1016/j.mtbio.2024.101187
- Wang M, Li W, Tang G, Garciamendez-Mijares CE, Zhang YS. Engineering (Bio)materials through shrinkage and expansion. Adv Healthc Mater. 2021;10(14):e2100380. doi: 10.1002/adhm.202100380
- Melocchi A, Uboldi M, Maroni A, et al. 3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery - a review. Int J Pharm. 2020;579:119155. doi: 10.1016/j.ijpharm.2020.119155
- Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353-3362. doi: 10.1021/acsnano.8b09233
- Qinyuan D, Zhuqing W, Qing L, et al. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration. Biomater Adv. 2024;159:213804. doi: 10.1016/j.bioadv.2024.213804
- Myrovali E, Chatzitaki AT, Papadopoulos K, Fatouros DG. Drug-loaded 3D-printed magnetically guided pills for biomedical applications. RSC Pharm. 2025;2(2):292-302. doi: 10.1039/d4pm00313f
- Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci U S A. 2014;111(27):9762-9767. doi: 10.1073/pnas.1405469111
- Kulkarni VR, Kazi M, Shahba AAW, Radhanpuri A, Maniruzzaman M. Three-dimensional printing of a container tablet: A new paradigm for multi-drug-containing bioactive self-nanoemulsifying drug-delivery systems (Bio-SNEDDSs). Pharmaceutics. 2022;14(5):1082. doi: 10.3390/pharmaceutics14051082
- Pawar AA, Saada G, Cooperstein I, et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci Adv. 2016;2(4):e1501381. doi: 10.1126/sciadv.1501381
- Trenfield SJ, Awad A, Madla CM, et al. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081-1094. doi: 10.1080/17425247.2019.1660318
- Gupta MK, Meng F, Johnson BN, et al. 3D printed programmable release capsules. Nano Lett. 2015;15(8):5321-5329. doi: 10.1021/acs.nanolett.5b01688
- Phan VHG, Murugesan M, Huong H, et al. Cellulose nanocrystals-incorporated thermosensitive hydrogel for controlled release, 3D printing, and breast cancer treatment applications. ACS Appl Mater Interfaces. 2022;14(38):42812-42826. doi: 10.1021/acsami.2c05864
- Miao S, Cui H, Nowicki M, et al. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication. 2018;10(3):035007. doi: 10.1088/1758-5090/aabe0b
- Sayyar S, Bjorninen M, Haimi S, et al. UV cross-linkable graphene/ poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds. ACS Appl Mater Interfaces. 2016;8(46):31916-31925. doi: 10.1021/acsami.6b09962
- D’Amora U, Russo T, Gloria A, et al. 3D additive-manufactured nanocomposite magnetic scaffolds: Effect of the application mode of a time-dependent magnetic field on hMSCs behavior. Bioact Mater. 2017;2(3):138-145. doi: 10.1016/j.bioactmat.2017.04.003
- Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139-148. doi: 10.1016/j.jmbbm.2015.11.036
- Zhou X, Castro NJ, Zhu W, et al. Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Sci Rep. 2016;6:32876. doi: 10.1038/srep32876
- Banche-Niclot F, Montalbano G, Fiorilli S, Vitale-Brovarone C. PEG-coated large mesoporous silicas as smart platform for protein delivery and their use in a collagen-based formulation for 3D printing. Int J Mol Sci. 2021;22(4):1718. doi: 10.3390/ijms22041718
- Zhang J, Zhao S, Zhu M, et al. 3D-printed magnetic Fe3O4/MBG/ PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B. 2014;2(43):7583-7595. doi: 10.1039/c4tb01063a
- Betsch M, Cristian C, Lin YY, et al. Incorporating 4D into bioprinting: Real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater. 2018;7(21):e1800894. doi: 10.1002/adhm.201800894
- Siebert L, Luna-Cerón E, García-Rivera LE, et al. Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold. Adv Funct Mater. 2021;31(22):2007555. doi: 10.1002/adfm.202007555
- Dong SL, Han L, Du CX, Wang XY, Li LH, Wei Y. 3D printing of aniline tetramer-grafted-polyethylenimine and pluronic F127 composites for electroactive scaffolds. Macromol Rapid Commun. 2017;38(4): 1600551. doi: 10.1002/marc.201600551
- Luo Y, Lin X, Chen B, Wei X. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Biofabrication. 2019;11(4):045019. doi: 10.1088/1758-5090/ab39c5
- Hendrikson WJ, Rouwkema J, Clementi F, Van Blitterswijk CA, Farè S, Moroni L. Towards 4D printed scaffolds for tissue engineering: Exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication. 2017;9(3):031001. doi: 10.1088/1758-5090/aa8114
- Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29(46):1703443. doi: 10.1002/adma.201703443
- Dutta S, Cohn D. Temperature and pH responsive 3D printed scaffolds. J Mater Chem B. 2017;5(48):9514-9521. doi: 10.1039/c7tb02368e
- Zhou X, Liu H, Yu Z, et al. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J Colloid Interface Sci. 2024;670:1-11. doi: 10.1016/j.jcis.2024.05.045
- Fan L, Zhang X, Liu X, Sun B, Li L, Zhao Y. Responsive hydrogel microcarrier-integrated microneedles for versatile and controllable drug delivery. Adv Healthc Mater. 2021;10(9):e2002249. doi: 10.1002/adhm.202002249
- Lu Y, Yu H, Wang L, Shen D, Liu J. Preparation of phenylboronic acid‐based glucose-responsive hydrogels and microneedles for regulated delivery of insulin. Eur Polym J. 2023;192:112061. doi: 10.1016/j.eurpolymj.2023.112061
- Wang C, Wang J, Zhang Z, Wang Q, Shang L. DNA-polyelectrolyte composite responsive microparticles for versatile chemotherapeutics cleaning. Research (Wash D C). 2023;6:0083. doi: 10.34133/research.0083
- Tsukamoto Y, Akagi T, Shima F, Akashi M. Fabrication of orientation-controlled 3D tissues using a layer-by-layer technique and 3D printed a thermoresponsive gel frame. Tissue Eng Part C Methods. 2017;23(6):357-366. doi: 10.1089/ten.TEC.2017.0134
- Bagheri A, Asadi-Eydivand M, Rosser AA, Fellows CM, Brown TC. 3D printing of customized drug delivery systems with controlled architecture via reversible addition-fragmentation chain transfer polymerization. Adv Eng Mater. 2023;25(10):2201785. doi: 10.1002/adem.202201785
- Mirani B, Pagan E, Currie B, et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv Healthc Mater. 2017;6(19):1700718. doi: 10.1002/adhm.201700718
- Ko ES, Kim C, Choi Y, Lee KY. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydr Polym. 2020;245:116496. doi: 10.1016/j.carbpol.2020.116496
- Borges J, Rodrigues LC, Reis RL, Mano JF. Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater. 2014;24(36):5624-5648. doi: 10.1002/adfm.201401050
- Haque S, Tanveer MH, Voicu RC. AI-Driven 3D Printing: Generative Gcode for Quality and Efficiency. Conference: SoutheastCon56624 2025; 2025. p. 1282-1287. doi: 10.1109/SoutheastCon56624.2025.10971689
- Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914. doi: 10.1016/j.apmt.2020.100914
- Gongora AE, Xu B, Perry W, et al. A Bayesian experimental autonomous researcher for mechanical design. Sci Adv. 2020;6(15):eaaz1708. doi: 10.1126/sciadv.aaz1708
- Smith AA, Li R, Tse ZTH. Reshaping healthcare with wearable biosensors. Sci Rep. 2023;13(1):4998. doi: 10.1038/s41598-022-26951-z
- Heikenfeld J, Jajack A, Rogers J, et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip. 2018;18(2):217-248. doi: 10.1039/c7lc00914c
- Mahalakshmi D, Nandhini J, Meenaloshini G, et al. Graphene nanomaterial-based electrochemical biosensors for salivary biomarker detection: A translational approach to oral cancer diagnostics. Nano TransMed. 2025;4:100073. doi: 10.1016/j.ntm.2025.100073
- Yi Q, Najafikhoshnoo S, Das P, et al. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv Mater Technol. 2022;7(5):2101034. doi: 10.1002/admt.202101034
- Vijayan N, Thanikachalam PV, Patel S. Decoding of the role of TREM2 in neuropathic pain: Molecular pathway and neuroinflammatory mechanism. Drug Dev Res. 2025;86(4):e70111. doi: 10.1002/ddr.70111
- Pravin S, Sudhir A. Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed Pharmacother. 2018;107:146-154. doi: 10.1016/j.biopha.2018.07.167
- Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drugproducts. Adv Drug Deliv Rev. 2017;108:39-50. doi: 10.1016/j.addr.2016.03.001
- Annas GJ. Personalized medicine or public health? Bioethics, human rights, and choice. Rev Portug Saude Publica. 2014;32(2):158-163. doi: 10.1016/j.rpsp.2014.04.003
- Redekop WK, Mladsi D. The faces of personalized medicine: A framework for understanding its meaning and scope. Value Health. 2013;16(6 Suppl):S4-S9. doi: 10.1016/j.jval.2013.06.005
