Biomaterials Translational ›› 2022, Vol. 3 ›› Issue (3): 201-212.doi: 10.12336/biomatertransl.2022.03.004
• REVIEW • Previous Articles Next Articles
Xin Huang#, Haoyu Guo#, Lutong Wang, Zengwu Shao*()
Received:
2022-07-20
Revised:
2022-08-26
Accepted:
2022-09-14
Online:
2022-09-28
Published:
2022-09-28
Contact:
Zengwu Shao
E-mail:szwpro@163.com
About author:
Zengwu Shao, szwpro@163.com.Huang, X.; Guo, H.; Wang, L.; Shao, Z. Engineered microorganismsbased delivery systems for targeted cancer therapy: a narrative review. Biomater Transl. 2022, 3(3), 201-212.
Figure 2. Representative examples of (A) physical integration strategies via electrostatic interactions, (B) chemical engineering strategies via covalent conjugation, (C) biological engineering strategies via genetic editing, and (D) cell membrane coating strategy. Scale bars: 1 μm. Ce6: chlorin e6; DOX: doxorubicin; E. Coli: Escherichia coli; E. Coli(p): Escherichia coli with a plasmid expressing the catalase; E. faecalis: Enterococcus faecalis; Ec–PR848: PR848 nanoparticle–load E. Coli; LP: liposome; MTB: magnetotactic bacteria; pDA: polydopamine; PDOX: DOX–loaded PLGA nanoparticles; PLGA: poly(lactic–co–glycolic acid); S. aureus: Staphylococcus aureus. A was reprinted with permission from Wei et al.40 Copyright 2021 American Chemical Society. B was reprinted with permission from Taherkhani et al.51 Copyright 2014 American Chemical Society. C was reprinted from Deng et al.59 Copyright 2021, with permission from Elsevier Ltd. D was reprinted from Cao et al.45
Figure 4. The modulatory mechanisms of the immune cells in the tumour microenvironment by fungal β–glucan. DC: dendritic cell; GrnzB: granzyme B; INF–γ: interferon–γ; M–MDSC: monocytic myeloid–derived suppressor cell; PMN–MDSC: polymorphonuclear myeloid–derived suppressor cell; ROS: reactive oxygen species; TNF–α: tumor necrosis factor–α; WGP: whole–glucan particles. Reprinted from Geller et al.77
Figure 5. Anti–tumour effects of chlorella extracts and lutein on human colon cancer cells. Reprinted with permission from Cha et al.81 Copyright 2008 American Chemical Society.
Figure 6. (A) Intratumoral inoculation of OV with transfection and immune cell recruitment. (B) Advanced transfection of an oncolytic virus into the tumour and niche cells with induction of immune cells resulting in apoptosis, direct cell lysis, niche disruption, and phagocytosis. (C) Distant tumour immune infiltration is induced by local immune conditioning. Blue: immune cells; red: tumour; orange: OV particles; green: tumour niche. OV: oncolytic virus. Reprinted from Raja et al.85
Therapy | Microorganisms | Substance | Mechanisms/effects | References |
---|---|---|---|---|
Chemotherapy | Streptococcus | Bovicin HC5 | Drilled pores in cell membranes | |
Pseudomonas aeruginosa | Pyocin S2 | Destroyed the DNA sequence | ||
Escherichia coli | Colicin E1/A | Induced necrosis | ||
Brevibacillus sp. | Laterosporulin 10 | Induced apoptosis or necrosis | ||
Lactococcus lactis | Nisin A/ZP | Inhibited cell proliferation and angiogenesis | ||
Pediococcus acidilactici | Pediocin CP2/K2a2 | Induced apoptosis | ||
Mushroom | Polysaccharide–peptide | Prolonged the 5–year survival rate in oesophageal cancer | ||
Chlorella ellipsoidea | Carotenoid | Devastated colon or colorectal cancer | ||
Synedra acus | Chrysolaminaran | Devastated colon or colorectal cancer | ||
Cocconeis scutellum | Eicosatetraenoic acid | Exerted anti–cancer effect in breast cancer | ||
Immunotherapy | Gram–negative bacteria | Peptidoglycan, LPS | Triggered the immune responses toward malignancy | |
Gram–positive bacteria | Peptidoglycan, LTA | |||
Phototherapy | E. Coli(p) | Membrane | Coated pDA@Ce6 to trigger phototherapy | |
Radiotherapy | Gut microbiome | Adjusted the responses to radiotherapy | ||
OV therapy | HSV | T–VEC | Targeted and killed the tumour cell |
Table 1. The origin and anti–cancer mechanisms or effects of microorganism–based anti–cancer therapy
Therapy | Microorganisms | Substance | Mechanisms/effects | References |
---|---|---|---|---|
Chemotherapy | Streptococcus | Bovicin HC5 | Drilled pores in cell membranes | |
Pseudomonas aeruginosa | Pyocin S2 | Destroyed the DNA sequence | ||
Escherichia coli | Colicin E1/A | Induced necrosis | ||
Brevibacillus sp. | Laterosporulin 10 | Induced apoptosis or necrosis | ||
Lactococcus lactis | Nisin A/ZP | Inhibited cell proliferation and angiogenesis | ||
Pediococcus acidilactici | Pediocin CP2/K2a2 | Induced apoptosis | ||
Mushroom | Polysaccharide–peptide | Prolonged the 5–year survival rate in oesophageal cancer | ||
Chlorella ellipsoidea | Carotenoid | Devastated colon or colorectal cancer | ||
Synedra acus | Chrysolaminaran | Devastated colon or colorectal cancer | ||
Cocconeis scutellum | Eicosatetraenoic acid | Exerted anti–cancer effect in breast cancer | ||
Immunotherapy | Gram–negative bacteria | Peptidoglycan, LPS | Triggered the immune responses toward malignancy | |
Gram–positive bacteria | Peptidoglycan, LTA | |||
Phototherapy | E. Coli(p) | Membrane | Coated pDA@Ce6 to trigger phototherapy | |
Radiotherapy | Gut microbiome | Adjusted the responses to radiotherapy | ||
OV therapy | HSV | T–VEC | Targeted and killed the tumour cell |
1. |
Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B. W.; Singh, A. V.; Sitti, M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016, 106, 27-44.
doi: 10.1016/j.addr.2016.09.007 URL |
2. |
Zhou, S.; Gravekamp, C.; Bermudes, D.; Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018, 18, 727-743.
doi: 10.1038/s41568-018-0070-z URL |
3. | Dolgin, E. Fighting cancer with microbes. Nature. 2020, 577, S16-S18. |
4. | McAdams, H. H.; Srinivasan, B.; Arkin, A. P. The evolution of genetic regulatory systems in bacteria. Nat Rev Genet. 2004, 5, 169-178. |
5. |
Zu, C.; Wang, J. Tumor-colonizing bacteria: a potential tumor targeting therapy. Crit Rev Microbiol. 2014, 40, 225-235.
doi: 10.3109/1040841X.2013.776511 URL |
6. | Suh, S.; Jo, A.; Traore, M. A.; Zhan, Y.; Coutermarsh-Ott, S. L.; Ringel-Scaia, V. M.; Allen, I. C.; Davis, R. M.; Behkam, B. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Adv Sci (Weinh). 2019, 6, 1801309. |
7. |
Zitvogel, L.; Daillère, R.; Roberti, M. P.; Routy, B.; Kroemer, G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017, 15, 465-478.
doi: 10.1038/nrmicro.2017.44 URL |
8. | Li, J.; Sung, C. Y.; Lee, N.; Ni, Y.; Pihlajamäki, J.; Panagiotou, G.; El-Nezami, H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016, 113, E1306-1315. |
9. |
Roy, S.; Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017, 17, 271-285.
doi: 10.1038/nrc.2017.13 URL |
10. |
Chen, Q. W.; Qiao, J. Y.; Liu, X. H.; Zhang, C.; Zhang, X. Z. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev. 2021, 50, 12576-12615.
doi: 10.1039/D0CS01571G URL |
11. |
Chen, W.; Wang, J.; Du, L.; Chen, J.; Zheng, Q.; Li, P.; Du, B.; Fang, X.; Liao, Z. Kefir microbiota and metabolites stimulate intestinal mucosal immunity and its early development. Crit Rev Food Sci Nutr. 2022, doi: 10.1080/10408398.2022.2115975.
doi: 10.1080/10408398.2022.2115975 URL |
12. |
Paiva, A. D.; de Oliveira, M. D.; de Paula, S. O.; Baracat-Pereira, M. C.; Breukink, E.; Mantovani, H. C. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology (Reading). 2012, 158, 2851-2858.
doi: 10.1099/mic.0.062190-0 URL |
13. |
Cao, J.; Zaremba, O. T.; Lei, Q.; Ploetz, E.; Wuttke, S.; Zhu, W. Artificial bioaugmentation of biomacromolecules and living organisms for biomedical applications. ACS Nano. 2021, 15, 3900-3926.
doi: 10.1021/acsnano.0c10144 URL |
14. | Guo, Z.; Richardson, J. J.; Kong, B.; Liang, K. Nanobiohybrids: materials approaches for bioaugmentation. Sci Adv. 2020, 6, eaaz0330. |
15. |
Yao, S.; Jin, B.; Liu, Z.; Shao, C.; Zhao, R.; Wang, X.; Tang, R. Biomineralization: from material tactics to biological strategy. Adv Mater. 2017, 29, 1605903.
doi: 10.1002/adma.201605903 URL |
16. |
Magennis, E. P.; Fernandez-Trillo, F.; Sui, C.; Spain, S. G.; Bradshaw, D. J.; Churchley, D.; Mantovani, G.; Winzer, K.; Alexander, C. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat Mater. 2014, 13, 748-755.
doi: 10.1038/nmat3949 URL |
17. | Li, Y.; Beitelshees, M.; Fang, L.; Hill, A.; Ahmadi, M. K.; Chen, M.; Davidson, B. A.; Knight, P., 3rd; Smith, R. J., Jr.; Andreadis, S. T.; Hakansson, A. P.; Jones, C. H.; Pfeifer, B. A. In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector. Sci Adv. 2016, 2, e1600264. |
18. |
Huang, Y.; Zeng, H.; Xie, L.; Gao, R.; Zhou, S.; Liang, Q.; Zhang, X.; Liang, K.; Jiang, L.; Kong, B. Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. J Am Chem Soc. 2022, 144, 13794-13805.
doi: 10.1021/jacs.2c04862 URL |
19. |
Yan, M.; Liu, T.; Li, X.; Zhou, S.; Zeng, H.; Liang, Q.; Liang, K.; Wei, X.; Wang, J.; Gu, Z.; Jiang, L.; Zhao, D.; Kong, B. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J Am Chem Soc. 2022, 144, 7778-7789.
doi: 10.1021/jacs.2c01096 URL |
20. |
Yan, M.; Xie, L.; Tang, J.; Liang, K.; Mei, Y.; Kong, B. Recent advances in heterosilica-based micro/nanomotors: designs, biomedical applications, and future perspectives. Chem Mater. 2021, 33, 3022-3046.
doi: 10.1021/acs.chemmater.1c00192 URL |
21. | Mostaghaci, B.; Yasa, O.; Zhuang, J.; Sitti, M. Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Adv Sci (Weinh). 2017, 4, 1700058. |
22. | Alapan, Y.; Yasa, O.; Schauer, O.; Giltinan, J.; Tabak, A. F.; Sourjik, V.; Sitti, M. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Robot. 2018, 3, eaar4423. |
23. | Vargason, A. M.; Santhosh, S.; Anselmo, A. C. Surface modifications for improved delivery and function of therapeutic bacteria. Small. 2020, 16, e2001705. |
24. |
Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 2018, 18, 2373-2380.
doi: 10.1021/acs.nanolett.7b05323 URL |
25. | Zheng, J. H.; Nguyen, V. H.; Jiang, S. N.; Park, S. H.; Tan, W.; Hong, S. H.; Shin, M. G.; Chung, I. J.; Hong, Y.; Bom, H. S.; Choy, H. E.; Lee, S. E.; Rhee, J. H.; Min, J. J. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 2017, 9, eaak9537. |
26. |
Johnston, T. G.; Yuan, S. F.; Wagner, J. M.; Yi, X.; Saha, A.; Smith, P.; Nelson, A.; Alper, H. S. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat Commun. 2020, 11, 563.
doi: 10.1038/s41467-020-14371-4 URL |
27. |
Dai, Z.; Lee, A. J.; Roberts, S.; Sysoeva, T. A.; Huang, S.; Dzuricky, M.; Yang, X.; Zhang, X.; Liu, Z.; Chilkoti, A.; You, L. Versatile biomanufacturing through stimulus-responsive cell-material feedback. Nat Chem Biol. 2019, 15, 1017-1024.
doi: 10.1038/s41589-019-0357-8 URL |
28. |
Anselmo, A. C.; McHugh, K. J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv Mater. 2016, 28, 9486-9490.
doi: 10.1002/adma.201603270 URL |
29. | Lou, X.; Chen, Z.; He, Z.; Sun, M.; Sun, J. Bacteria-mediated synergistic cancer therapy: small microbiome has a big hope. Nanomicro Lett. 2021, 13, 37. |
30. |
Cao, Z.; Liu, J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release. 2020, 326, 396-407.
doi: 10.1016/j.jconrel.2020.07.009 URL |
31. |
Chen, Q. W.; Wang, J. W.; Wang, X. N.; Fan, J. X.; Liu, X. H.; Li, B.; Han, Z. Y.; Cheng, S. X.; Zhang, X. Z. Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism. Angew Chem Int Ed Engl. 2020, 59, 21562-21570.
doi: 10.1002/anie.202002649 URL |
32. | Huang, X.; Pan, J.; Xu, F.; Shao, B.; Wang, Y.; Guo, X.; Zhou, S. Bacteria-based cancer immunotherapy. Adv Sci (Weinh). 2021, 8, 2003572. |
33. |
Helmink, B. A.; Khan, M. A. W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat Med. 2019, 25, 377-388.
doi: 10.1038/s41591-019-0377-7 URL |
34. |
Schwabe, R. F.; Jobin, C. The microbiome and cancer. Nat Rev Cancer. 2013, 13, 800-812.
doi: 10.1038/nrc3610 URL |
35. |
Arthur, J. C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J. M.; Fan, T. J.; Campbell, B. J.; Abujamel, T.; Dogan, B.; Rogers, A. B.; Rhodes, J. M.; Stintzi, A.; Simpson, K. W.; Hansen, J. J.; Keku, T. O.; Fodor, A. A.; Jobin, C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012, 338, 120-123.
doi: 10.1126/science.1224820 URL |
36. |
Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; Chen, Y.; Chen, H.; Hong, J.; Zou, W.; Fang, J. Y. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017, 170:548-563.e16.
doi: 10.1016/j.cell.2017.07.008 URL |
37. |
Zagato, E.; Pozzi, C.; Bertocchi, A.; Schioppa, T.; Saccheri, F.; Guglietta, S.; Fosso, B.; Melocchi, L.; Nizzoli, G.; Troisi, J.; Marzano, M.; Oresta, B.; Spadoni, I.; Atarashi, K.; Carloni, S.; Arioli, S.; Fornasa, G.; Asnicar, F.; Segata, N.; Guglielmetti, S.; Honda, K.; Pesole, G.; Vermi, W.; Penna, G.; Rescigno, M. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol. 2020, 5, 511-524.
doi: 10.1038/s41564-019-0649-5 URL |
38. | Atasheva, S.; Emerson, C. C.; Yao, J.; Young, C.; Stewart, P. L.; Shayakhmetov, D. M. Systemic cancer therapy with engineered adenovirus that evades innate immunity. Sci Transl Med. 2020, 12, eabc6659. |
39. |
Lui, L. T.; Xue, X.; Sui, C.; Brown, A.; Pritchard, D. I.; Halliday, N.; Winzer, K.; Howdle, S. M.; Fernandez-Trillo, F.; Krasnogor, N.; Alexander, C. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nat Chem. 2013, 5, 1058-1065.
doi: 10.1038/nchem.1793 URL |
40. |
Wei, B.; Pan, J.; Yuan, R.; Shao, B.; Wang, Y.; Guo, X.; Zhou, S. Polarization of tumor-associated macrophages by nanoparticle-loaded escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett. 2021, 21, 4231-4240.
doi: 10.1021/acs.nanolett.1c00209 URL |
41. |
Cao, Z.; Wang, X.; Pang, Y.; Cheng, S.; Liu, J. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun. 2019, 10, 5783.
doi: 10.1038/s41467-019-13727-9 URL |
42. |
Drachuk, I.; Calabrese, R.; Harbaugh, S.; Kelley-Loughnane, N.; Kaplan, D. L.; Stone, M.; Tsukruk, V. V. Silk macromolecules with amino acid-poly(ethylene glycol) grafts for controlling layer-by-layer encapsulation and aggregation of recombinant bacterial cells. ACS Nano. 2015, 9, 1219-1235.
doi: 10.1021/nn504890z URL |
43. | Zhou, X.; Zeng, Y.; Tang, Y.; Huang, Y.; Lv, F.; Liu, L.; Wang, S. Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials. Sci Adv. 2020, 6, eabc5237. |
44. |
Gai, P.; Yu, W.; Zhao, H.; Qi, R.; Li, F.; Liu, L.; Lv, F.; Wang, S. Solar-powered organic semiconductor-bacteria biohybrids for CO(2) reduction into acetic acid. Angew Chem Int Ed Engl. 2020, 59, 7224-7229.
doi: 10.1002/anie.202001047 URL |
45. |
Cao, Z.; Cheng, S.; Wang, X.; Pang, Y.; Liu, J. Camouflaging bacteria by wrapping with cell membranes. Nat Commun. 2019, 10, 3452.
doi: 10.1038/s41467-019-11390-8 URL |
46. |
Lv, P.; Liu, X.; Chen, X.; Liu, C.; Zhang, Y.; Chu, C.; Wang, J.; Wang, X.; Chen, X.; Liu, G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Lett. 2019, 19, 2993-3001.
doi: 10.1021/acs.nanolett.9b00145 URL |
47. |
Chodisetti, P. K.; Reddy, M. Peptidoglycan hydrolase of an unusual cross-link cleavage specificity contributes to bacterial cell wall synthesis. Proc Natl Acad Sci U S A. 2019, 116, 7825-7830.
doi: 10.1073/pnas.1816893116 URL |
48. |
Luo, G. F.; Chen, W. H.; Zeng, X.; Zhang, X. Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev. 2021, 50, 945-985.
doi: 10.1039/D0CS00152J URL |
49. |
Spicer, C. D.; Pashuck, E. T.; Stevens, M. M. Achieving controlled biomolecule-biomaterial conjugation. Chem Rev. 2018, 118, 7702-7743.
doi: 10.1021/acs.chemrev.8b00253 URL |
50. | Ojkic, N.; Serbanescu, D.; Banerjee, S. Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. eLife. 2019, 8, e47033. |
51. |
Taherkhani, S.; Mohammadi, M.; Daoud, J.; Martel, S.; Tabrizian, M. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano. 2014, 8, 5049-5060.
doi: 10.1021/nn5011304 URL |
52. |
Felfoul, O.; Mohammadi, M.; Taherkhani, S.; de Lanauze, D.; Zhong Xu, Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D.; Martel, S. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016, 11, 941-947.
doi: 10.1038/nnano.2016.137 URL |
53. | Fan, J. X.; Peng, M. Y.; Wang, H.; Zheng, H. R.; Liu, Z. L.; Li, C. X.; Wang, X. N.; Liu, X. H.; Cheng, S. X.; Zhang, X. Z. Engineered bacterial bioreactor for tumor therapy via fenton-like reaction with localized H(2) O(2) generation. Adv Mater. 2019, 31, e1808278. |
54. |
Kim, H.; Shin, K.; Park, O. K.; Choi, D.; Kim, H. D.; Baik, S.; Lee, S. H.; Kwon, S. H.; Yarema, K. J.; Hong, J.; Hyeon, T.; Hwang, N. S. General and facile coating of single cells via mild reduction. J Am Chem Soc. 2018, 140, 1199-1202.
doi: 10.1021/jacs.7b08440 URL |
55. |
Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J Am Chem Soc. 2006, 128, 15874-15881.
doi: 10.1021/ja065864k URL |
56. | Yin, H.; Kauffman, K. J.; Anderson, D. G. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017, 16, 387-399. |
57. |
Riglar, D. T.; Giessen, T. W.; Baym, M.; Kerns, S. J.; Niederhuber, M. J.; Bronson, R. T.; Kotula, J. W.; Gerber, G. K.; Way, J. C.; Silver, P. A. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol. 2017, 35, 653-658.
doi: 10.1038/nbt.3879 URL |
58. | Gurbatri, C. R.; Lia, I.; Vincent, R.; Coker, C.; Castro, S.; Treuting, P. M.; Hinchliffe, T. E.; Arpaia, N.; Danino, T. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Transl Med. 2020, 12, eaax0876. |
59. |
Deng, X.; Yang, W.; Shao, Z.; Zhao, Y. Genetically modified bacteria for targeted phototherapy of tumor. Biomaterials. 2021, 272, 120809.
doi: 10.1016/j.biomaterials.2021.120809 URL |
60. |
Vargason, A. M.; Anselmo, A. C. Clinical translation of microbe-based therapies: Current clinical landscape and preclinical outlook. Bioeng Transl Med. 2018, 3, 124-137.
doi: 10.1002/btm2.10093 URL |
61. |
Singh, A. V.; Hosseinidoust, Z.; Park, B. W.; Yasa, O.; Sitti, M. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano. 2017, 11, 9759-9769.
doi: 10.1021/acsnano.7b02082 URL |
62. |
Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv Mater. 2015, 27, 7043-7050.
doi: 10.1002/adma.201503323 URL |
63. | Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Ye, J. J.; Song, W.; Feng, J.; Zhang, X. Z. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv Mater. 2019, 31, e1900499. |
64. |
Abdi-Ali, A.; Worobec, E. A.; Deezagi, A.; Malekzadeh, F. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol. 2004, 50, 375-381.
doi: 10.1139/w04-019 URL |
65. |
Mercado-Lubo, R.; Zhang, Y.; Zhao, L.; Rossi, K.; Wu, X.; Zou, Y.; Castillo, A.; Leonard, J.; Bortell, R.; Greiner, D. L.; Shultz, L. D.; Han, G.; McCormick, B. A. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun. 2016, 7, 12225.
doi: 10.1038/ncomms12225 URL |
66. | Felgner, S.; Kocijancic, D.; Frahm, M.; Heise, U.; Rohde, M.; Zimmermann, K.; Falk, C.; Erhardt, M.; Weiss, S. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology. 2018, 7, e1382791. |
67. |
Fritz, S. E.; Henson, M. S.; Greengard, E.; Winter, A. L.; Stuebner, K. M.; Yoon, U.; Wilk, V. L.; Borgatti, A.; Augustin, L. B.; Modiano, J. F.; Saltzman, D. A. A phase I clinical study to evaluate safety of orally administered, genetically engineered Salmonella enterica serovar Typhimurium for canine osteosarcoma. Vet Med Sci. 2016, 2, 179-190.
doi: 10.1002/vms3.32 URL |
68. |
Chowdhury, S.; Castro, S.; Coker, C.; Hinchliffe, T. E.; Arpaia, N.; Danino, T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019, 25, 1057-1063.
doi: 10.1038/s41591-019-0498-z URL |
69. |
Kucerova, P.; Cervinkova, M. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment. Anticancer Drugs. 2016, 27, 269-277.
doi: 10.1097/CAD.0000000000000337 URL |
70. |
Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D. P.; Pfirschke, C.; Engblom, C.; Pittet, M. J.; Schlitzer, A.; Ginhoux, F.; Apetoh, L.; Chachaty, E.; Woerther, P. L.; Eberl, G.; Bérard, M.; Ecobichon, C.; Clermont, D.; Bizet, C.; Gaboriau-Routhiau, V.; Cerf-Bensussan, N.; Opolon, P.; Yessaad, N.; Vivier, E.; Ryffel, B.; Elson, C. O.; Doré, J.; Kroemer, G.; Lepage, P.; Boneca, I. G.; Ghiringhelli, F.; Zitvogel, L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013, 342, 971-976.
doi: 10.1126/science.1240537 URL |
71. |
Chumchalová, J.; Smarda, J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha). 2003, 48, 111-115.
doi: 10.1007/BF02931286 URL |
72. |
Baindara, P.; Gautam, A.; Raghava, G. P. S.; Korpole, S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep. 2017, 7, 46541.
doi: 10.1038/srep46541 URL |
73. |
Begde, D.; Bundale, S.; Mashitha, P.; Rudra, J.; Nashikkar, N.; Upadhyay, A. Immunomodulatory efficacy of nisin--a bacterial lantibiotic peptide. J Pept Sci. 2011, 17, 438-444.
doi: 10.1002/psc.1341 URL |
74. | Kamarajan, P.; Hayami, T.; Matte, B.; Liu, Y.; Danciu, T.; Ramamoorthy, A.; Worden, F.; Kapila, S.; Kapila, Y. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One. 2015, 10, e0131008. |
75. |
Lim, Y. C.; Kim, C. H.; Kim, Y. B.; Joo, J. Y.; Shin, Y. S.; Chung, J. Incidence and risk factors for rebleeding during cerebral angiography for ruptured intracranial aneurysms. Yonsei Med J. 2015, 56, 403-409.
doi: 10.3349/ymj.2015.56.2.403 URL |
76. |
Ritz, B. W.. Supplementation with active hexose correlated compound increases survival following infectious challenge in mice. Nutr Rev. 2008, 66, 526-531.
doi: 10.1111/j.1753-4887.2008.00085.x URL |
77. |
Geller, A.; Shrestha, R.; Yan, J. Yeast-derived β-glucan in cancer: novel uses of a traditional therapeutic. Int J Mol Sci. 2019, 20, 3618.
doi: 10.3390/ijms20153618 URL |
78. | Kidd, P. M.. The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev. 2000, 5, 4-27. |
79. |
Wong, J. H.; Sze, S. C. W.; Ng, T. B.; Cheung, R. C. F.; Tam, C.; Zhang, K. Y.; Dan, X.; Chan, Y. S.; Cho, W. C.; Ng, C. C. W.; Waye, M. M. Y.; Liang, W.; Zhang, J.; Yang, J.; Ye, X.; Lin, J.; Ye, X.; Wang, H.; Liu, F.; Chan, D. W.; Ngan, H. Y. S.; Sha, O.; Li, G.; Tse, R.; Tse, T. F.; Chan, H. Apoptosis and anti–cancer drug discovery: the power of medicinal fungi and plants. Curr Med Chem. 2018, 25, 5613-5630.
doi: 10.2174/0929867324666170720165005 URL |
80. |
Martínez Andrade, K. A.; Lauritano, C.; Romano, G.; Ianora, A. Marine microalgae with anti–cancer properties. Mar Drugs. 2018, 16, 165.
doi: 10.3390/md16050165 URL |
81. |
Cha, K. H.; Koo, S. Y.; Lee, D. U. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem. 2008, 56, 10521-10526.
doi: 10.1021/jf802111x URL |
82. | Shishlyannikov, S. M.; Klimenkov, I. V.; Bedoshvili, Y. D.; Mikhailov, I. S.; Gorshkov, A. G. Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. J Biol Res (Thessalon). 2014, 21, 15. |
83. |
Nappo, M.; Berkov, S.; Massucco, C.; Di Maria, V.; Bastida, J.; Codina, C.; Avila, C.; Messina, P.; Zupo, V.; Zupo, S. Apoptotic activity of the marine diatom Cocconeis scutellum and eicosapentaenoic acid in BT20 cells. Pharm Biol. 2012, 50, 529-535.
doi: 10.3109/13880209.2011.611811 URL |
84. | Duong, M. T.; Qin, Y.; You, S. H.; Min, J. J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019, 51, 1-15. |
85. |
Raja, J.; Ludwig, J. M.; Gettinger, S. N.; Schalper, K. A.; Kim, H. S. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018, 6, 140.
doi: 10.1186/s40425-018-0458-z URL |
86. | Liu, X.; Yin, S.; Chen, Y.; Wu, Y.; Zheng, W.; Dong, H.; Bai, Y.; Qin, Y.; Li, J.; Feng, S.; Zhao, P. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Mol Med Rep. 2018, 17, 5484-5491. |
87. |
Aykut, B.; Pushalkar, S.; Chen, R.; Li, Q.; Abengozar, R.; Kim, J. I.; Shadaloey, S. A.; Wu, D.; Preiss, P.; Verma, N.; Guo, Y.; Saxena, A.; Vardhan, M.; Diskin, B.; Wang, W.; Leinwand, J.; Kurz, E.; Kochen Rossi, J. A.; Hundeyin, M.; Zambrinis, C.; Li, X.; Saxena, D.; Miller, G. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019, 574, 264-267.
doi: 10.1038/s41586-019-1608-2 URL |
88. | Sepich-Poore, G. D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J. A.; Knight, R. The microbiome and human cancer. Science. 2021, 371, eabc4552. |
89. |
Chen, Y.; Zhang, F.; Wang, Q.; Tong, R.; Lin, H.; Qu, F. Near-infrared light-mediated LA-UCNPs@SiO(2)-C/HA@mSiO(2)-DOX@NB nanocomposite for chemotherapy/PDT/PTT and imaging. Dalton Trans. 2017, 46, 14293-14300.
doi: 10.1039/C7DT02529G URL |
90. |
Gulzar, A.; Xu, J.; Yang, D.; Xu, L.; He, F.; Gai, S.; Yang, P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans. 2018, 47, 3931-3939.
doi: 10.1039/C7DT04141A URL |
91. |
Doppalapudi, R.; Vundavalli, S.; Prabhat, M. P. Effect of probiotic bacteria on oral Candida in head- and neck-radiotherapy patients: A randomized clinical trial. J Cancer Res Ther. 2020, 16, 470-477.
doi: 10.4103/jcrt.JCRT_334_18 URL |
92. |
Liu, J.; Liu, C.; Yue, J. Radiotherapy and the gut microbiome: facts and fiction. Radiat Oncol. 2021, 16, 9.
doi: 10.1186/s13014-020-01735-9 URL |
93. |
Mondal, M.; Guo, J.; He, P.; Zhou, D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. 2020, 16, 2389-2402.
doi: 10.1080/21645515.2020.1723363 URL |
94. |
Harrington, K.; Freeman, D. J.; Kelly, B.; Harper, J.; Soria, J. C. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019, 18, 689-706.
doi: 10.1038/s41573-019-0029-0 URL |
95. | Watanabe, D.; Goshima, F. Oncolytic virotherapy by HSV. Adv Exp Med Biol. 2018, 1045, 63-84. |
96. |
Kanai, R.; Wakimoto, H.; Cheema, T.; Rabkin, S. D. Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer? Future Oncol. 2010, 6, 619-634.
doi: 10.2217/fon.10.18 URL |
97. |
Kwan, A.; Winder, N.; Muthana, M. Oncolytic virotherapy treatment of breast cancer: barriers and recent advances. Viruses. 2021, 13, 1128.
doi: 10.3390/v13061128 URL |
98. |
Wang, G.; Kang, X.; Chen, K. S.; Jehng, T.; Jones, L.; Chen, J.; Huang, X. F.; Chen, S. Y. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun. 2020, 11, 1395.
doi: 10.1038/s41467-020-15229-5 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||