Biomaterials Translational ›› 2021, Vol. 2 ›› Issue (4): 294-300.doi: 10.12336/biomatertransl.2021.04.004
• REVIEW • Previous Articles Next Articles
Received:
2021-11-13
Revised:
2021-12-12
Accepted:
2021-12-20
Online:
2021-12-28
Published:
2021-12-28
Contact:
Peter W. Andrews
E-mail:p.w.andrews@sheffield.ac.uk
About author:
Peter W. Andrews, p.w.andrews@sheffield.ac.uk.
Andrews, P. W. Human pluripotent stem cells: tools for regenerative medicine. Biomater Transl. 2021, 2(4), 294-300.
1. |
Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282, 1145-1147.
doi: 10.1126/science.282.5391.1145 URL |
2. |
Gearhart, J. D. New potential for human embryonic stem cells. Science. 1998, 282, 1061-1062.
doi: 10.1126/science.282.5391.1061 URL |
3. |
Trounson, A.; Pera, M. Potential benefits of cell cloning for human medicine. Reprod Fertil Dev. 1998, 10, 121-125.
doi: 10.1071/R98042 URL |
4. |
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126, 663-676.
doi: 10.1016/j.cell.2006.07.024 URL |
5. |
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131, 861-872.
doi: 10.1016/j.cell.2007.11.019 URL |
6. |
Yu, J.; Vodyanik, M. A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J. L.; Tian, S.; Nie, J.; Jonsdottir, G. A.; Ruotti, V.; Stewart, R.; Slukvin, II.; Thomson, J. A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318, 1917-1920.
doi: 10.1126/science.1151526 URL |
7. |
Halliwell, J.; Barbaric, I.; Andrews, P. W. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat Rev Mol Cell Biol. 2020, 21, 715-728.
doi: 10.1038/s41580-020-00292-z URL |
8. | Damjanov, I.; Solter, D. Experimental teratoma. Curr Top Pathol. 1974, 59, 69-130. |
9. |
Andrews, P. W. From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci. 2002, 357, 405-417.
doi: 10.1098/rstb.2002.1058 URL |
10. |
Einhorn, L. H. Treatment strategies of testicular cancer in the United States. Int J Androl. 1987, 10, 399-405.
doi: 10.1111/j.1365-2605.1987.tb00210.x URL |
11. |
Stevens, L. C.; Little, C. C. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A. 1954, 40, 1080-1087.
doi: 10.1073/pnas.40.11.1080 URL |
12. | Kleinsmith, L. J.; Pierce, G. B., Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964, 24, 1544-1551. |
13. | Damjanov, I.; Andrews, P. W. The terminology of teratocarcinomas and teratomas. Nat Biotechnol. 2007, 25, 1212; discussion 1212 |
14. | Evans, M. J. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol. 1972, 28, 163-176. |
15. |
Martin, G. R.; Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A. 1975, 72, 1441-1445.
doi: 10.1073/pnas.72.4.1441 URL |
16. | Nicolas, J. F.; Dubois, P.; Jakob, H.; Gaillard, J.; Jacob, F. Tératocarcinome de la souris: différenciation en culture d’une lignée de cellules primitives à potentialities multiples. Ann Microbiol Inst Pasteur A. 1975, 126, 3-22. |
17. |
Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med. 1974, 140, 1049-1056.
doi: 10.1084/jem.140.4.1049 URL |
18. |
Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981, 292, 154-156.
doi: 10.1038/292154a0 URL |
19. |
Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981, 78, 7634-7638.
doi: 10.1073/pnas.78.12.7634 URL |
20. |
Hogan, B.; Fellous, M.; Avner, P.; Jacob, F. Isolation of a human teratoma cell line which expresses F9 antigen. Nature. 1977, 270, 515-518.
doi: 10.1038/270515a0 URL |
21. |
Andrews, P. W.; Bronson, D. L.; Benham, F.; Strickland, S.; Knowles, B. B. A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int J Cancer. 1980, 26, 269-280.
doi: 10.1002/(ISSN)1097-0215 URL |
22. |
Andrews, P. W.; Damjanov, I.; Simon, D.; Banting, G. S.; Carlin, C.; Dracopoli, N. C.; Føgh, J. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest. 1984, 50, 147-162.
doi: 10.1038/jid.1968.18 URL |
23. |
Pera, M. F.; Cooper, S.; Mills, J.; Parrington, J. M. Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation. 1989, 42, 10-23.
doi: 10.1111/j.1432-0436.1989.tb00602.x URL |
24. |
Andrews, P. W.; Casper, J.; Damjanov, I.; Duggan-Keen, M.; Giwercman, A.; Hata, J.; von Keitz, A.; Looijenga, L. H.; Millán, J. L.; Oosterhuis, J. W.; Pera, M.; Sawada, M.; Schmoll, H. J.; Skakkebaek, N. E.; van Putten, W.; Stern, P. Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int J Cancer. 1996, 66, 806-816.
doi: 10.1002/(ISSN)1097-0215 URL |
25. |
Reubinoff, B. E.; Pera, M. F.; Fong, C. Y.; Trounson, A.; Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000, 18, 399-404.
doi: 10.1038/74447 URL |
26. |
Draper, J. S.; Pigott, C.; Thomson, J. A.; Andrews, P. W. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002, 200, 249-258.
doi: 10.1046/j.1469-7580.2002.00030.x URL |
27. |
Damjanov, I.; Andrews, P. W. Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice - a histopathology atlas. Int J Dev Biol. 2016, 60, 337-419.
doi: 10.1387/ijdb.160274id URL |
28. |
International Stem Cell Initiative; Adewumi, O.; Aflatoonian, B.; Ahrlund-Richter, L.; Amit, M.; Andrews, P. W.; Beighton, G.; Bello, P. A.; Benvenisty, N.; Berry, L. S.; Bevan, S.; Blum, B.; Brooking, J.; Chen, K. G.; Choo, A. B.; Churchill, G. A.; Corbel, M.; Damjanov, I.; Draper, J. S.; Dvorak, P.; Emanuelsson, K.; Fleck, R. A.; Ford, A.; Gertow, K.; Gertsenstein, M.; Gokhale, P. J.; Hamilton, R. S.; Hampl, A.; Healy, L. E.; Hovatta, O.; Hyllner, J.; Imreh, M. P.; Itskovitz-Eldor, J.; Jackson, J.; Johnson, J. L.; Jones, M.; Kee, K.; King, B. L.; Knowles, B. B.; Lako, M.; Lebrin, F.; Mallon, B. S.; Manning, D.; Mayshar, Y.; McKay, R. D.; Michalska, A. E.; Mikkola, M.; Mileikovsky, M.; Minger, S. L.; Moore, H. D.; Mummery, C. L.; Nagy, A.; Nakatsuji, N.; O’Brien, C. M.; Oh, S. K.; Olsson, C.; Otonkoski, T.; Park, K. Y.; Passier, R.; Patel, H.; Patel, M.; Pedersen, R.; Pera, M. F.; Piekarczyk, M. S.; Pera, R. A.; Reubinoff, B. E.; Robins, A. J.; Rossant, J.; Rugg-Gunn, P.; Schulz, T. C.; Semb, H.; Sherrer, E. S.; Siemen, H.; Stacey, G. N.; Stojkovic, M.; Suemori, H.; Szatkiewicz, J.; Turetsky, T.; Tuuri, T.; van den Brink, S.; Vintersten, K.; Vuoristo, S.; Ward, D.; Weaver, T. A.; Young, L. A.; Zhang, W. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007, 25, 803-816.
doi: 10.1038/nbt1318 URL |
29. |
International Stem Cell Initiative. Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Commun. 2018, 9, 1925.
doi: 10.1038/s41467-018-04011-3 URL |
30. |
Itskovitz-Eldor, J.; Schuldiner, M.; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M.; Soreq, H.; Benvenisty, N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000, 6, 88-95.
doi: 10.1007/BF03401776 URL |
31. |
Schuldiner, M.; Yanuka, O.; Itskovitz-Eldor, J.; Melton, D. A.; Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2000, 97, 11307-11312.
doi: 10.1073/pnas.97.21.11307 URL |
32. |
Bock, C.; Kiskinis, E.; Verstappen, G.; Gu, H.; Boulting, G.; Smith, Z. D.; Ziller, M.; Croft, G. F.; Amoroso, M. W.; Oakley, D. H.; Gnirke, A.; Eggan, K.; Meissner, A. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011, 144, 439-452.
doi: 10.1016/j.cell.2010.12.032 URL |
33. |
Tsankov, A. M.; Akopian, V.; Pop, R.; Chetty, S.; Gifford, C. A.; Daheron, L.; Tsankova, N. M.; Meissner, A. A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol. 2015, 33, 1182-1192.
doi: 10.1038/nbt.3387 URL |
34. |
Avior, Y.; Biancotti, J. C.; Benvenisty, N. TeratoScore: assessing the differentiation potential of human pluripotent stem cells by quantitative expression analysis of teratomas. Stem Cell Reports. 2015, 4, 967-974.
doi: 10.1016/j.stemcr.2015.05.006 URL |
35. |
Tippett, P.; Andrews, P. W.; Knowles, B. B.; Solter, D.; Goodfellow, P. N. Red cell antigens P (globoside) and Luke: identification by monoclonal antibodies defining the murine stage-specific embryonic antigens -3 and -4 (SSEA-3 and SSEA-4). Vox Sang. 1986, 51, 53-56.
doi: 10.1111/vox.1986.51.issue-1 URL |
36. |
Andrews, P. W.; Banting, G.; Damjanov, I.; Arnaud, D.; Avner, P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma. 1984, 3, 347-361.
doi: 10.1089/hyb.1984.3.347 URL |
37. |
Müller, F. J.; Schuldt, B. M.; Williams, R.; Mason, D.; Altun, G.; Papapetrou, E. P.; Danner, S.; Goldmann, J. E.; Herbst, A.; Schmidt, N. O.; Aldenhoff, J. B.; Laurent, L. C.; Loring, J. F. A bioinformatic assay for pluripotency in human cells. Nat Methods. 2011, 8, 315-317.
doi: 10.1038/nmeth.1580 URL |
38. |
Vugler, A.; Carr, A. J.; Lawrence, J.; Chen, L. L.; Burrell, K.; Wright, A.; Lundh, P.; Semo, M.; Ahmado, A.; Gias, C.; da Cruz, L.; Moore, H.; Andrews, P.; Walsh, J.; Coffey, P. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008, 214, 347-361.
doi: 10.1016/j.expneurol.2008.09.007 URL |
39. |
Schwartz, S. D.; Regillo, C. D.; Lam, B. L.; Eliott, D.; Rosenfeld, P. J.; Gregori, N. Z.; Hubschman, J. P.; Davis, J. L.; Heilwell, G.; Spirn, M.; Maguire, J.; Gay, R.; Bateman, J.; Ostrick, R. M.; Morris, D.; Vincent, M.; Anglade, E.; Del Priore, L. V.; Lanza, R. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015, 385, 509-516.
doi: 10.1016/S0140-6736(14)61376-3 URL |
40. |
da Cruz, L.; Fynes, K.; Georgiadis, O.; Kerby, J.; Luo, Y. H.; Ahmado, A.; Vernon, A.; Daniels, J. T.; Nommiste, B.; Hasan, S. M.; Gooljar, S. B.; Carr, A. F.; Vugler, A.; Ramsden, C. M.; Bictash, M.; Fenster, M.; Steer, J.; Harbinson, T.; Wilbrey, A.; Tufail, A.; Feng, G.; Whitlock, M.; Robson, A. G.; Holder, G. E.; Sagoo, M. S.; Loudon, P. T.; Whiting, P.; Coffey, P. J. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018, 36, 328-337.
doi: 10.1038/nbt.4114 URL |
41. |
Kimbrel, E. A.; Lanza, R. Pluripotent stem cells: the last 10 years. Regen Med. 2016, 11, 831-847.
doi: 10.2217/rme-2016-0117 URL |
42. |
Rossant, J.; Tam, P. P. L. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell. 2017, 20, 18-28.
doi: 10.1016/j.stem.2016.12.004 URL |
43. |
Chen, G.; Gulbranson, D. R.; Hou, Z.; Bolin, J. M.; Ruotti, V.; Probasco, M. D.; Smuga-Otto, K.; Howden, S. E.; Diol, N. R.; Propson, N. E.; Wagner, R.; Lee, G. O.; Antosiewicz-Bourget, J.; Teng, J. M.; Thomson, J. A. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011, 8, 424-429.
doi: 10.1038/nmeth.1593 URL |
44. |
Hackland, J. O. S.; Frith, T. J. R.; Thompson, O.; Marin Navarro, A.; Garcia-Castro, M. I.; Unger, C.; Andrews, P. W. Top-down inhibition of BMP signaling enables robust induction of hpscs into neural crest in fully defined, xeno-free conditions. Stem Cell Reports. 2017, 9, 1043-1052.
doi: 10.1016/j.stemcr.2017.08.008 URL |
45. |
Enver, T.; Pera, M.; Peterson, C.; Andrews, P. W. Stem cell states, fates, and the rules of attraction. Cell Stem Cell. 2009, 4, 387-397.
doi: 10.1016/j.stem.2009.04.011 URL |
46. |
Tonge, P. D.; Olariu, V.; Coca, D.; Kadirkamanathan, V.; Burrell, K. E.; Billings, S. A.; Andrews, P. W. Prepatterning in the stem cell compartment. PLoS One. 2010, 5, e10901.
doi: 10.1371/journal.pone.0010901 URL |
47. |
Allison, T. F.; Smith, A. J. H.; Anastassiadis, K.; Sloane-Stanley, J.; Biga, V.; Stavish, D.; Hackland, J.; Sabri, S.; Langerman, J.; Jones, M.; Plath, K.; Coca, D.; Barbaric, I.; Gokhale, P.; Andrews, P. W. Identification and single-cell functional characterization of an endodermally biased pluripotent substate in human embryonic stem cells. Stem Cell Reports. 2018, 10, 1895-1907.
doi: 10.1016/j.stemcr.2018.04.015 URL |
48. |
Stavish, D.; Böiers, C.; Price, C.; Frith, T. J. R.; Halliwell, J.; Saldaña-Guerrero, I.; Wray, J.; Brown, J.; Carr, J.; James, C.; Barbaric, I.; Andrews, P. W.; Enver, T. Generation and trapping of a mesoderm biased state of human pluripotency. Nat Commun. 2020, 11, 4989.
doi: 10.1038/s41467-020-18727-8 URL |
49. |
Ahmed, T.; Bosl, G. J.; Hajdu, S. I. Teratoma with malignant transformation in germ cell tumors in men. Cancer. 1985, 56, 860-863.
doi: 10.1002/(ISSN)1097-0142 URL |
50. |
Rouhani, F. J.; Nik-Zainal, S.; Wuster, A.; Li, Y.; Conte, N.; Koike-Yusa, H.; Kumasaka, N.; Vallier, L.; Yusa, K.; Bradley, A. Mutational history of a human cell lineage from somatic to induced pluripotent stem cells. PLoS Genet. 2016, 12, e1005932.
doi: 10.1371/journal.pgen.1005932 URL |
51. |
International Stem Cell Initiative; Amps, K.; Andrews, P. W.; Anyfantis, G.; Armstrong, L.; Avery, S.; Baharvand, H.; Baker, J.; Baker, D.; Munoz, M. B.; Beil, S.; Benvenisty, N.; Ben-Yosef, D.; Biancotti, J. C.; Bosman, A.; Brena, R. M.; Brison, D.; Caisander, G.; Camarasa, M. V.; Chen, J.; Chiao, E.; Choi, Y. M.; Choo, A. B.; Collins, D.; Colman, A.; Crook, J. M.; Daley, G. Q.; Dalton, A.; De Sousa, P. A.; Denning, C.; Downie, J.; Dvorak, P.; Montgomery, K. D.; Feki, A.; Ford, A.; Fox, V.; Fraga, A. M.; Frumkin, T.; Ge, L.; Gokhale, P. J.; Golan-Lev, T.; Gourabi, H.; Gropp, M.; Lu, G.; Hampl, A.; Harron, K.; Healy, L.; Herath, W.; Holm, F.; Hovatta, O.; Hyllner, J.; Inamdar, M. S.; Irwanto, A. K.; Ishii, T.; Jaconi, M.; Jin, Y.; Kimber, S.; Kiselev, S.; Knowles, B. B.; Kopper, O.; Kukharenko, V.; Kuliev, A.; Lagarkova, M. A.; Laird, P. W.; Lako, M.; Laslett, A. L.; Lavon, N.; Lee, D. R.; Lee, J. E.; Li, C.; Lim, L. S.; Ludwig, T. E.; Ma, Y.; Maltby, E.; Mateizel, I.; Mayshar, Y.; Mileikovsky, M.; Minger, S. L.; Miyazaki, T.; Moon, S. Y.; Moore, H.; Mummery, C.; Nagy, A.; Nakatsuji, N.; Narwani, K.; Oh, S. K.; Oh, S. K.; Olson, C.; Otonkoski, T.; Pan, F.; Park, I. H.; Pells, S.; Pera, M. F.; Pereira, L. V.; Qi, O.; Raj, G. S.; Reubinoff, B.; Robins, A.; Robson, P.; Rossant, J.; Salekdeh, G. H.; Schulz, T. C.; Sermon, K.; Sheik Mohamed, J.; Shen, H.; Sherrer, E.; Sidhu, K.; Sivarajah, S.; Skottman, H.; Spits, C.; Stacey, G. N.; Strehl, R.; Strelchenko, N.; Suemori, H.; Sun, B.; Suuronen, R.; Takahashi, K.; Tuuri, T.; Venu, P.; Verlinsky, Y.; Ward-van Oostwaard, D.; Weisenberger, D. J.; Wu, Y.; Yamanaka, S.; Young, L.; Zhou, Q. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011, 29, 1132-1144.
doi: 10.1038/nbt.2051 URL |
52. |
Merkle, F. T.; Ghosh, S.; Kamitaki, N.; Mitchell, J.; Avior, Y.; Mello, C.; Kashin, S.; Mekhoubad, S.; Ilic, D.; Charlton, M.; Saphier, G.; Handsaker, R. E.; Genovese, G.; Bar, S.; Benvenisty, N.; McCarroll, S. A.; Eggan, K. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017, 545, 229-233.
doi: 10.1038/nature22312 URL |
53. |
Baugh, E. H.; Sillars-Hardebol, A. H.; Carvalho, B.; Beliën, J. A.; de Wit, M.; Delis-van Diemen, P. M.; Tijssen, M.; van de Wiel, M. A.; Pontén, F.; Fijneman, R. J.; Meijer, G. A. BCL2L1 has a functional role in colorectal cancer and its protein expression is associated with chromosome 20q gain. J Pathol. 2012, 226, 442-450.
doi: 10.1002/path.2983 URL |
54. |
Baugh, E. H.; Ke, H.; Levine, A. J.; Bonneau, R. A.; Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018, 25, 154-160.
doi: 10.1038/cdd.2017.180 URL |
55. |
Baker, D.; Hirst, A. J.; Gokhale, P. J.; Juarez, M. A.; Williams, S.; Wheeler, M.; Bean, K.; Allison, T. F.; Moore, H. D.; Andrews, P. W.; Barbaric, I. Detecting genetic mosaicism in cultures of human pluripotent stem cells. Stem Cell Reports. 2016, 7, 998-1012.
doi: 10.1016/j.stemcr.2016.10.003 URL |
56. |
Thompson, O.; von Meyenn, F.; Hewitt, Z.; Alexander, J.; Wood, A.; Weightman, R.; Gregory, S.; Krueger, F.; Andrews, S.; Barbaric, I.; Gokhale, P. J.; Moore, H. D.; Reik, W.; Milo, M.; Nik-Zainal, S.; Yusa, K.; Andrews, P. W. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nat Commun. 2020, 11, 1528.
doi: 10.1038/s41467-020-15271-3 URL |
57. |
Halliwell, J. A.; Frith, T. J. R.; Laing, O.; Price, C. J.; Bower, O. J.; Stavish, D.; Gokhale, P. J.; Hewitt, Z.; El-Khamisy, S. F.; Barbaric, I.; Andrews, P. W. Nucleosides rescue replication-mediated genome instability of human pluripotent stem cells. Stem Cell Reports. 2020, 14, 1009-1017.
doi: 10.1016/j.stemcr.2020.04.004 URL |
58. |
Desmarais, J. A.; Hoffmann, M. J.; Bingham, G.; Gagou, M. E.; Meuth, M.; Andrews, P. W. Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells. 2012, 30, 1385-1393.
doi: 10.1002/stem.v30.7 URL |
[1] | Dafna Benayahu. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing [J]. Biomaterials Translational, 2022, 3(online first): 0-1. |
[2] | Xing Yang, Yuanyuan Li, Xujie Liu, Wei He, Qianli Huang, Qingling Feng. Nanoparticles and their effects on differentiation of mesenchymal stem cells [J]. Biomaterials Translational, 2020, 1(1): 58-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||