Biofunctional magnesium coating of implant materials by physical vapour deposition
The lack of bioactivity of conventional medical materials leads to low osseointegration ability that may result in the occurrence of aseptic loosening in the clinic. To achieve high osseointegration, surface modifications with multiple biofunctions including degradability, osteogenesis, angiogenesis and antibacterial properties are required. However, the functions of conventional bioactive coatings are limited. Thus novel biofunctional magnesium (Mg) coatings are believed to be promising candidates for surface modification of implant materials for use in bone tissue repair. By physical vapour deposition, many previous researchers have deposited Mg coatings with high purity and granular microstructure on titanium alloys, polyetheretherketone, steels, Mg alloys and silicon. It was found that the Mg coatings with high-purity could considerably control the degradation rate in the initial stage of Mg alloy implantation, which is the most important problem for the application of Mg alloy implants. In addition, Mg coating on titanium (Ti) implant materials has been extensively studied both in vitro and in vivo, and the results indicated that their corrosion behaviour and biocompatibility are promising. Mg coatings continuously release Mg ions during the degradation process, and the alkaline environment caused by Mg degradation has obvious antibacterial effects. Meanwhile, the Mg coating has beneficial effects on osteogenesis and osseointegration, and increases the new bone-regenerating ability. Mg coatings also exhibit favourable osteogenic and angiogenic properties in vitro and increased long-term bone formation and early vascularization in vivo. Inhibitory effects of Mg coatings on osteoclasts have also been proven, which play a great role in osteoporotic patients. In addition, in order to obtain more biofunctions, other alloying elements such as copper have been added to the Mg coatings. Thus, Mg-coated Ti acquired biofunctions including degradability, osteogenesis, angiogenesis and antibacterial properties. These novel multi-functional Mg coatings are expected to significantly enhance the long-term safety of bone implants for the benefit of patients. This paper gives a brief review of studies of the microstructure, degradation behaviours and biofunctions of Mg coatings, and directions for future research are also proposed.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Wang, Q. C.; Zhang, B. C.; Ren, Y. B.; Yang, K. Research and application of biomedical nickel-free stainless steels. Jinshu Xuebao. 2017, 53, 1311-1316.
2. Chen, Q.; Thouas, G. A. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015, 87, 1-57.
3. Najeeb, S.; Zafar, M. S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016, 60, 12-19.
4. Drago, C.; Howell, K. Concepts for designing and fabricating metal implant frameworks for hybrid implant prostheses. J Prosthodont. 2012, 21, 413-424.
5. Xue, W.; Krishna, B. V.; Bandyopadhyay, A.; Bose, S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007, 3, 1007-1018.
6. Ratner, B.; Hoffman, A.; Schoen, F.; Lemons, J. Biomaterials science: an introduction to materials in medicine. 2nd ed. Academic Press: 2004.
7. Asri, R. I. M.; Harun, W. S. W.; Samykano, M.; Lah, N. A. C.; Ghani, S. A. C.; Tarlochan, F.; Raza, M. R. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl. 2017, 77, 1261-1274.
8. Li, Y.; Yang, W.; Li, X.; Zhang, X.; Wang, C.; Meng, X.; Pei, Y.; Fan, X.; Lan, P.; Wang, C.; Li, X.; Guo, Z. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces. 2015, 7, 5715-5724.
9. Li, Y.; Jahr, H.; Zhou, J.; Zadpoor, A. A. Additively manufactured biodegradable porous metals. Acta Biomater. 2020, 115, 29-50.
10. Geetha, M.; Singh, A. K.; Asokamani, R.; Gogia, A. K. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci. 2009, 54, 397-425.
11. Rafieerad, A. R.; Ashra, M. R.; Mahmoodian, R.; Bushroa, A. R. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper. Mater Sci Eng C Mater Biol Appl. 2015, 57, 397-413.
12. Le, V. Q.; Pourroy, G.; Cochis, A.; Rimondini, L.; Abdel-Fattah, W. I.; Mohammed, H. I.; Carradò, A. Alternative technique for calcium phosphate coating on titanium alloy implants. Biomatter. 2014, 4, e28534.
13. Romanò, C. L.; Tsuchiya, H.; Morelli, I.; Battaglia, A. G.; Drago, L. Antibacterial coating of implants: are we missing something? Bone Joint Res. 2019, 8, 199-206.
14. Yang, J.; Qin, H.; Chai, Y.; Zhang, P.; Chen, Y.; Yang, K.; Qin, M.; Zhang, Y.; Xia, H.; Ren, L.; Yu, B. Molecular mechanisms of osteogenesis and antibacterial activity of Cu-bearing Ti alloy in a bone defect model with infection in vivo. J Orthop Translat. 2021, 27, 77-89.
15. Yang, K.; Zhou, C.; Fan, H.; Fan, Y.; Jiang, Q.; Song, P.; Fan, H.; Chen, Y.; Zhang, X. Bio-Functional design, application and trends in metallic biomaterials. Int J Mol Sci. 2017, 19, 24.
16. Robinson, D. A.; Griffith, R. W.; Shechtman, D.; Evans, R. B.; Conzemius, M. G. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2010, 6, 1869-1877.
17. Ren, L.; Lin, X.; Tan, L.; Yang, K. Effect of surface coating on antibacterial behavior of magnesium based metals. Mater Lett. 2011, 65, 3509-3511.
18. Zhai, Z.; Qu, X.; Li, H.; Yang, K.; Wan, P.; Tan, L.; Ouyang, Z.; Liu, X.; Tian, B.; Xiao, F.; Wang, W.; Jiang, C.; Tang, T.; Fan, Q.; Qin, A.; Dai, K. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials. 2014, 35, 6299-6310.
19. Chen, Z.; Mao, X.; Tan, L.; Friis, T.; Wu, C.; Crawford, R.; Xiao, Y. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials. 2014, 35, 8553-8565.
20. Wang, J. L.; Xu, J. K.; Hopkins, C.; Chow, D. H.; Qin, L. Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives. Adv Sci (Weinh). 2020, 7, 1902443.
21. Belluci, M. M.; Giro, G.; Del Barrio, R. A. L.; Pereira, R. M. R.; Marcantonio, E., Jr.; Orrico, S. R. P. Effects of magnesium intake deficiency on bone metabolism and bone tissue around osseointegrated implants. Clin Oral Implants Res. 2011, 22, 716-721.
22. Lee, M. H.; Bae, I. Y.; Kim, K. J.; Moon, K. M.; Oki, T. Formation mechanism of new corrosion resistance magnesium thin films by PVD method. Surf Coat Technol. 2003, 169-170, 670-674.
23. Salunke, P.; Shanov, V.; Witte, F. High purity biodegradable magnesium coating for implant application. Mater Sci Eng B. 2011, 176, 1711-1717.
24. Li, X.; Gao, P.; Wan, P.; Pei, Y.; Shi, L.; Fan, B.; Shen, C.; Xiao, X.; Yang, K.; Guo, Z. Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: in vitro and in vivo study. Sci Rep. 2017, 7, 40755.
25. Yu, X.; Ibrahim, M.; Liu, Z.; Yang, H.; Tan, L.; Yang, K. Biofunctional Mg coating on PEEK for improving bioactivity. Bioact Mater. 2018, 3, 139-143.
26. Gao, P.; Fan, B.; Yu, X.; Liu, W.; Wu, J.; Shi, L.; Yang, D.; Tan, L.; Wan, P.; Hao, Y.; Li, S.; Hou, W.; Yang, K.; Li, X.; Guo, Z. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020, 5, 680-693.
27. Yu, X.; Ibrahim, M.; Lu, S.; Yang, H.; Tan, L.; Yang, K. MgCu coating on Ti6Al4V alloy for orthopedic application. Mater Lett. 2018, 233, 35-38.
28. Yamamoto, A.; Watanabe, A.; Sugahara, K.; Fukumoto, S.; Tsubakino, H. Deposition coating of magnesium alloys with pure magnesium. Mater Trans. 2001, 42, 1237-1242.
29. Fukumoto, S.; Sugahara, K.; Yamamoto, A.; Tsubakino, H. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium. Mater Trans. 2003, 44, 518-523.
30. Du, Z.; Yu, X.; Nie, B.; Zhu, Z.; Ibrahim, M.; Yang, K.; Tan, L.; Wang, Y. Effects of magnesium coating on bone-implant interfaces with and without polyether-ether-ketone particle interference: A rabbit model based on porous Ti6Al4V implants. J Biomed Mater Res B Appl Biomater. 2019, 107, 2388-2396.
31. Yu, X. M.; Tan, L. L.; Liu, Z. Y.; Yang, K.; Zhu, Z. L.; Li, Y. D. Preparation and properties of biological functional magnesium coating on Ti6Al4V substrate. Jinshu Xuebao. 2018, 54, 943-949.
32. Ding, Y.; Du, Z.; Zhu, Z.; Yu, X.; Wang, Y. Effect of biodegradable magnesium-copper coatings on bone integration based on the porous structures in a rabbit model. RSC Adv. 2018, 8, 25127-25132.
33. Tsubakino, H.; Yamamoto, A.; Fukumoto, S.; Watanabe, A.; Sugahara, K.; Inoue, H. High-purity magnesium coating on magnesium alloys by vapor deposition technique for improving corrosion resistance. Mater Trans. 2003, 44, 504-510.
34. International Organization for Standardization. ISO 10993-12:2021. Biological evaluation of medical devices — Part 12: Sample preparation and reference materials. 2021.
35. Wang, C.; Lin, K.; Chang, J.; Sun, J. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials. 2013, 34, 64-77.
36. Yu, Y.; Jin, G.; Xue, Y.; Wang, D.; Liu, X.; Sun, J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 2017, 49, 590-603.
37. Tan, L.; Yu, X.; Wan, P.; Yang, K. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013, 29, 503-513.
38. Hou, P.; Zhao, C.; Cheng, P.; Wu, H.; Ni, J.; Zhang, S.; Lou, T.; Wang, C.; Han, P.; Zhang, X.; Chai, Y. Reduced antibacterial property of metallic magnesium in vivo. Biomed Mater. 2016, 12, 015010.
39. Jin, X.; Gao, L.; Liu, E.; Yu, F.; Shu, X.; Wang, H. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel. J Mech Behav Biomed Mater. 2015, 50, 23-32.
40. Liu, C.; Fu, X.; Pan, H.; Wan, P.; Wang, L.; Tan, L.; Wang, K.; Zhao, Y.; Yang, K.; Chu, P. K. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep. 2016, 6, 27374.
41. Li, Y.; Liu, L.; Wan, P.; Zhai, Z.; Mao, Z.; Ouyang, Z.; Yu, D.; Sun, Q.; Tan, L.; Ren, L.; Zhu, Z.; Hao, Y.; Qu, X.; Yang, K.; Dai, K. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations. Biomaterials. 2016, 106, 250-263.
42. He, Y.; Zhang, Y.; Zhang, J.; Jiang, Y.; Zhou, R. Fabrication and characterization of Ti-13Nb-13Zr alloy with radial porous Ti-HA coatings for bone implants. Mater Lett. 2017, 209, 543-546.