ORIGINAL RESEARCH

Catechin encapsulation and controlled release through pH-sensitive multi-branched copolymers for optimized antimicrobial activity

Mohammed Belkadi1* Ridouan El Yousfi2* Oumayma Sayah3 Mohammed Dalli4 Aziza Hami1 Adil Maleb5
Show Less
1 Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, University Mohammed First, Oujda, Oriental Region, Morocco
2 Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohamed First University, Oujda, Oriental Region, Morocco
3 Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Oriental Region, Morocco
4 Department of Human Physiology and Ethnopharmacology, Higher Institute of Nursing Professions and Health Techniques, Mohammed First University, Oujda, Oriental Region, Morocco
5 Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohammed the First, Oujda, Oriental Region, Morocco
Submitted: 10 June 2025 | Revised: 25 August 2025 | Accepted: 28 August 2025 | Published: 14 November 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

Conventional delivery systems, such as liposomes or non-responsive micelles, often fail to adequately protect catechin from premature degradation or to achieve effective bioavailability. To address these limitations, we developed an advanced delivery architecture that safeguards catechin and ensures targeted activity within acidic infection microenvironments, offering a promising strategy for antimicrobial therapy amid rising bacterial resistance. In this study, a multi-branched copolymer poly(4-vinylpyridine) (P4VP)-(poly[ε-caprolactone]20)5 (PCL) with an AB5 architecture was designed, where P4VP constitutes the hydrophilic segment and PCL forms the hydrophobic segment. This copolymer was engineered to encapsulate catechin and ensure its controlled release. Upon self-assembly in aqueous solution, it formed vesicles with well-defined morphologies, as confirmed by dynamic light scattering and transmission electron microscopy. At physiological conditions (pH 7.0), the vesicles were stable (~90 nm, ζ-potential <3 mV). At acidic conditions (pH 5.5), they underwent structural disorganization accompanied by an increase in size (~130 nm) and surface charge (+42 mV), which triggered catechin release (>90% within 24 h). Antibacterial assays demonstrated a marked enhancement in efficacy after encapsulation. Compared to free catechin, which exhibited limited inhibition zones (7–8 mm), catechin-loaded vesicles achieved zones of 22 mm against Staphylococcus aureus and 23 mm against Escherichia coli. Minimum inhibitory concentration values also decreased by an order of magnitude, highlighting the superior potency of the encapsulated formulation. Our findings highlight the P4VP-(PCL20)5 copolymer as a unique nanocarrier that unifies stability, pH-responsiveness, and drug protection within a single platform.

Keywords
Nanoencapsulation
Catechin
Controlled release
Self-assembly
Antibacterial activity
Funding
None.
Conflict of interest
The researchers declare that they do not have any conflicts of interest concerning this publication.
References
[1]
  1. Medina E, Pieper DH. Tackling threats and future problems of multidrug-resistant bacteria. In: How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives. Berlin: Springer; 2016. p. 3-33.

 

  1. Alara JA, Alara OR. An overview of the global alarming increase of multiple drug resistant: A major challenge in clinical diagnosis. Infect Disord Drug Targets. 2024;24(3):26-42. doi: 10.2174/1871526523666230725103902

 

  1. Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical strategies toward precision targeting against multidrug-resistant bacterial infections. ACS Nano. 2024;18(22):14085-14122. doi: 10.1021/acsnano.3c12714

 

  1. Huang YC, Kuo SC, Fang CT, Lauderdale TL. Changing epidemiology and antimicrobial resistance of bacteria causing bacteremia in Taiwan: 2002-2020. Microbiol Spectr. 2024;12(8):e0060824. doi: 10.1128/spectrum.00608-24

 

  1. Adouane M, Kadri N, Benzitoune N, et al. Understanding bacterial diversity, infection dynamics, prevention of antibiotic resistance: An integrated study in an Algerian hospital context. Eur J Clin Microbiol Infect Dis. 2024;43(11):2093-2105. doi: 10.1007/s10096-024-04919-3

 

  1. Sadones O, Kramarska E, Laverde D, Berisio R, Huebner J, Romero- Saavedra F. Investigation of cross-opsonic effect leads to the discovery of PPIase-domain containing protein vaccine candidate to prevent infections by Gram-positive ESKAPE pathogens. BMC Microbiol. 2024;24(1):280. doi: 10.1186/s12866-024-03427-w

 

  1. Shafique S, Jabeen N, Irum S, Mehmood A, Ahmad KS. Expression of mastitis causing fibrinogen binding protein of gram positive bacteria in genetically engineered switchgrass and antibodies production in mice. Physiol Mol Biol Plants. 2024;30(11):1829-1839. doi: 10.1007/s12298-024-01528-4

 

  1. Bisola MAI, Olatunji G, Kokori E, et al. Emerging challenges in innate immunity: Staphylococcus aureus and healthcare-associated infection. J Med Surg Public Health. 2024;3:100103. doi: 10.1016/j.glmedi.2024.100103

 

  1. Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Exp Rev Anti Infect Ther. 2024;22(1-3):87-101. doi: 10.1080/14787210.2024.2303018

 

  1. Zeferino AS, Mira AR, Delgadinho M, Brito M, Ponte T, Ribeiro E. Drug resistance and epigenetic modulatory potential of epigallocatechin- 3-gallate against Staphylococcus aureus. Curr Microbiol. 2022;79(5):149. doi: 10.1007/s00284-022-02841-5

 

  1. Liang Z, Liu W, Wang Z, et al. Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nanoparticles for synergistic elimination of methicillin-resistant Staphylococcus aureus and wound healing. Acta Biomater. 2022;143:428-444. doi: 10.1016/j.actbio.2022.02.029

 

  1. Veiko AG, Olchowik-Grabarek E, Sekowski S, et al. Antimicrobial activity of quercetin, naringenin and catechin: Flavonoids inhibit Staphylococcus aureus-induced hemolysis and modify membranes of bacteria and erythrocytes. Molecules. 2023;28(3):1252. doi: 10.3390/molecules28031252

 

  1. Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure-activity relationships. Food Funct. 2020;11(11):9370-9396. doi: 10.1039/d0fo02054k

 

  1. Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol. 2020;4:1-10.

 

  1. Gadkari PV, Balaraman M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod Process. 2015;93:122-138. doi: 10.1016/j.fbp.2013.12.004

 

  1. Parisi OI, Puoci F, Restuccia D, Farina G, Iemma F, Picci N. Polyphenols and their formulations: Different strategies to overcome the drawbacks associated with their poor stability and bioavailability. In: Polyphenols in Human Health and Disease. Netherlands: Elsevier; 2014. p. 29-45.

 

  1. Alfei S, Schito AM, Zuccari G. Nanotechnological manipulation of nutraceuticals and phytochemicals for healthy purposes: Established advantages vs. Still undefined risks. Polymers (Basel). 2021;13(14):2262. doi: 10.3390/polym13142262

 

  1. Ahmad SR, Ghosh P. A systematic investigation on flavonoids, catechin, β-sitosterol and lignin glycosides from Saraca asoca (ashoka) having anti-cancer & antioxidant properties with no side effect. J Indian Chem Soc. 2022;99(1):100293. doi: 10.1016/j.jics.2021.100293

 

  1. Mani JS, Johnson JB, Hosking H, et al. Antioxidative and therapeutic potential of selected Australian plants: A review. J Ethnopharmacol. 2021;268:113580. doi: 10.1016/j.jep.2020.113580

 

  1. Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med Drug Discov. 2022;15:100134. doi: 10.1016/j.medidd.2022.100134

 

  1. Wu M, Brown AC. Applications of catechins in the treatment of bacterial infections. Pathogens. 2021;10(5):546. doi: 10.3390/pathogens10050546

 

  1. Fathima A, Rao JR. Selective toxicity of catechin-a natural flavonoid towards bacteria. Appl Microbiol Biotechnol. 2016;100:6395-6402. doi: 10.1007/s00253-016-7492-x

 

  1. Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res. 2019;149(2):129-145. doi: 10.4103/ijmr.IJMR_2079_17

 

  1. Miklasińska-Majdanik M, Kępa M, Wojtyczka RD, Idzik D, Wąsik TJ. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int J Environ Res Public Health. 2018;15(10):2321. doi: 10.3390/ijerph15102321

 

  1. Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez- Díaz JC, Micol V. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Curr Med Chem. 2020;27(15):2576-2606. doi: 10.2174/0929867325666181008115650

 

  1. Murugan S, Senthilvelan T, Govindasamy M, Thangavel K. A comprehensive review on exploring the potential of phytochemicals and biogenic nanoparticles for the treatment of antimicrobial-resistant pathogenic bacteria. Curr Microbiol. 2025;82(2):90. doi: 10.1007/s00284-025-04064-w

 

  1. Liu H, Song P, Zhang H, et al. Synthetic biology‐based bacterial extracellular vesicles displaying BMP‐2 and CXCR4 to ameliorate osteoporosis. J Extracell Vesicles. 2024;13(4):e12429. doi: 10.1002/jev2.12429

 

  1. Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact Mater. 2022;14:169-181. doi: 10.1016/j.bioactmat.2021.12.006

 

  1. Chiabotto G, Semnani A, Ceccotti E, Bruno S. Extracellular vesicles: Emerging therapeutic agents for liver fibrosis. Extracell Vesicles Circ Nucl Acids. 2025;6(2):216-244. doi: 10.20517/evcna.2025.08

 

  1. Wang F, Li Z. Engineered extracellular vesicles as “supply vehicles” to alleviate type 1 diabetes. Extracell Vesicles Circ Nucl Acids. 2024;5(4):618-621. doi: 10.20517/evcna.2024.61

 

  1. Qi C, Liu G, Ping Y, et al. A comprehensive review of nano-delivery system for tea polyphenols: Construction, applications, and challenges. Food Chem X. 2023;17:100571. doi: 10.1016/j.fochx.2023.100571

 

  1. Shikha D, Singh A, Rangra NK, Monga V, Bhatia R. Insights to therapeutic potentials, pharmaceutical formulations, chemistry and analytical methods of catechin. Phytochem Rev. 2024;23:1557-1598. doi: 10.1007/s11101-024-09929-9

 

  1. Wang X, Fan Y, Yan J, Yang M. Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chem Eng J. 2022;439:135661. doi: 10.1016/j.cej.2022.135661

 

  1. Vittorio O, Curcio M, Cojoc M, et al. Polyphenols delivery by polymeric materials: Challenges in cancer treatment. Drug Deliv. 2017;24(1):162-180. doi: 10.1080/10717544.2016.1236846

 

  1. Zhang R, Ma Q, Zheng N, et al. Plant polyphenol‐based injectable hydrogels: Advances and biomedical applications. Adv Healthc Mater. 2025;14(12):2500445. doi: 10.1002/adhm.202500445

 

  1. Xu C, Zhou S, Song H, et al. Green tea polyphenols-derived hybrid materials in manufacturing, environment, food and healthcare. Nano Today. 2023;52:101990. doi: 10.1016/j.nantod.2023.101990

 

  1. Pecorini G, Ferraro E, Puppi D. Polymeric systems for the controlled release of flavonoids. Pharmaceutics. 2023;15(2):628. doi: 10.3390/pharmaceutics15020628

 

  1. Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The role of macrophages in Staphylococcus aureus infection. Front Immunol. 2021;11:620339. doi: 10.3389/fimmu.2020.620339

 

  1. Flannagan RS, Kuiack RC, McGavin MJ, Heinrichs DE. Staphylococcus aureus uses the GraXRS regulatory system to sense and adapt to the acidified phagolysosome in macrophages. MBio. 2018;9(4):e01143-18. doi: 10.1128/mbio.01143-18

 

  1. Flannagan RS, Heit B, Heinrichs DE. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens. 2015;4(4):826-868. doi: 10.3390/pathogens4040826

 

  1. Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, et al. Staphylococcus aureus in inflammation and pain: Update on pathologic mechanisms. Pathogens. 2025;14(2):185. doi: 10.3390/pathogens14020185

 

  1. Leonarduzzi G, Testa G, Sottero B, Gamba P, Poli G. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr Med Chem. 2010;17(1):74-95. doi: 10.2174/092986710789957760

 

  1. Elkhalifa ME, Ashraf M, Ahmed A, et al. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol. 2024;19(3):255-279. doi: 10.2217/fmb-2023-0175

 

  1. Shahi F, Afshar H, Dawi EA, Khonakdar HA. Smart microneedles in biomedical engineering: Harnessing stimuli‐responsive polymers for novel applications. Polym Adv Technol. 2024;35(12):e70020. doi: 10.1002/pat.70020

 

  1. Zhao N, Yan L, Zhao X, et al. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem Rev. 2018;119(3):1666-1762. doi: 10.1021/acs.chemrev.8b00401

 

  1. Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Pre doi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity-A critical view. Eur J Med Chem. 2018;157:1326-1345. doi: 10.1016/j.ejmech.2018.08.076

 

  1. Mukurumbira A, Shellie RA, Keast R, Palombo EA, Jadhav SR. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control. 2022;136:108883. doi: 10.1016/j.foodcont.2022.108883

 

  1. Ben-Fadhel Y, Maherani B, Manus J, Salmieri S, Lacroix M. Physicochemical and microbiological characterization of pectin-based gelled emulsions coating applied on pre-cut carrots. Food Hydrocolloids. 2020;101:105573. doi: 10.1016/j.foodhyd.2019.105573

 

  1. Guerra-Rosas MI, Morales-Castro J, Cubero-Márquez MA, Salvia- Trujillo L, Martín-Belloso O. Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control. 2017;77:131-138. doi: 10.1016/j.foodcont.2017.02.008

 

  1. Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari M, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces. 2021;204:111781. doi: 10.1016/j.colsurfb.2021.111781

 

  1. El Yousfi R, Achalhi N, Brahmi M, et al. Controlled synthesis of linear and multi ARM amphiphilic copolymers consisting of P4VP and PCL for tailored nano-aggregate formation. J Mol Liquids. 2024;394:123774. doi: 10.1016/j.molliq.2023.123774

 

  1. Yousfi RE, Atanase LI, Makaoui A, et al. Enhanced quercetin encapsulation through charge density and amphiphilicity tuning in cationic triblock micelles. ACS Appl Polym Mater. 2025;7:6365-6383. doi: 10.1021/acsapm.5c00806

 

  1. Gröschel AH, Müller AH. Self-assembly concepts for multicompartment nanostructures. Nanoscale. 2015;7(28):11841-11876. doi: 10.1039/C5NR02448J

 

  1. Brisson ER, Worthington MJ, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: A survey of their syntheses and potential applications. Chem Soc Rev. 2024;53(4):1984-2021.doi: 10.1039/D1CS01114F

 

  1. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25-30. doi: 10.1016/S0023-6438(95)80008-5

 

  1. Wu KH, Wang YR, Hwu WH. FTIR and TGA studies of poly(4- vinylpyridine-co-divinylbenzene)-Cu (II) complex. Polym Degrad Stabil. 2003;79(2):195-200. doi: 10.1016/S0141-3910(02)00261-6

 

  1. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci. 2004;273(2):381-387. doi: 10.1016/j.jcis.2004.02.001

 

  1. Liu H, Ding M, Ding Z, Gao C, Zhang W. In situ synthesis of the Ag/ poly(4-vinylpyridine)-block-polystyrene composite nanoparticles by dispersion RAFT polymerization. Polym Chem. 2017;8(20):3203-3210. doi: 10.1039/C7PY00473G

 

  1. Ferrari R, Yu Y, Morbidelli M, Hutchinson RA, Moscatelli D. ε-Caprolactone-based macromonomers suitable for biodegradable nanoparticles synthesis through free radical polymerization. Macromolecules. 2011;44(23):9205-9212. doi: 10.1021/ma201955p

 

  1. Sahiner N, Ozay O. Responsive tunable colloidal soft materials based on p (4-VP) for potential biomedical and environmental applications. Colloids Surfaces A Physicochem Eng Aspects. 2011;378(1-3):50-59. doi: 10.1016/j.colsurfa.2011.01.053

 

  1. Sahiner N, Yasar AO. The generation of desired functional groups on poly (4-vinyl pyridine) particles by post-modification technique for antimicrobial and environmental applications. J Colloid Interface Sci. 2013;402:327-333. doi: 10.1016/j.jcis.2013.03.032

 

  1. Amalvy J, Wanless E, Li Y, Michailidou V, Armes S, Duccini Y. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir. 2004;20(21):8992-8999. doi: 10.1021/la049156t

 

  1. Li Y, Gao GH, Lee DS. Stimulus‐sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater. 2013;2(3):388-417. doi: 10.1002/adhm.201200313

 

  1. Ding H, Tan P, Fu S, et al. Preparation and application of pH-responsive drug delivery systems. J Control Release. 2022;348:206-238. doi: 10.1016/j.jconrel.2022.05.056

 

  1. He X, Li J, An S, Jiang C. pH-sensitive drug-delivery systems for tumor targeting. Ther Deliv. 2013;4(12):1499-1510. doi: 10.4155/tde.13.120

 

  1. Mendrek S, Mendrek A, Adler HJ, Dworak A, Kuckling D. Synthesis and characterization of pH sensitive poly (glycidol)‐b‐poly (4‐vinylpyridine) block copolymers. J Polym Sci Part A Polym Chem. 2009;47(7):1782-1794. doi: 10.1002/pola.23276

 

  1. Sahiner N, Atta AM, Yasar AO, Al-Lohedan HA, Ezzat AO. Surface activity of amphiphilic cationic pH-responsive poly(4-vinylpyridine) microgel at air/water interface. Colloids Surf A Physicochem Eng Aspects. 2015;482:647-655. doi: 10.1016/j.colsurfa.2015.07.035

 

  1. Mishra AK, Lim J, Lee J, et al. Control drug release behavior by highly stable and pH sensitive poly (N-vinylpyrrolidone)-block-poly (4-vinylpyridine) copolymer micelles. Polymer. 2021;213:123329. doi: 10.1016/j.polymer.2020.123329

 

  1. Aljuffali IA, Lin CH, Yang SC, Alalaiwe A, Fang JY. Nanoencapsulation of tea catechins for enhancing skin absorption and therapeutic efficacy. Aaps PharmSciTech. 2022;23(6):187. doi: 10.1208/s12249-022-02344-3

 

  1. Kono K, Tatara I, Takeda S, Arakawa K, Hara Y. Antibacterial activity of epigallocatechin gallate against methicillin-resistant Staphylococcus aureus. Kansenshogaku Zasshi. 1994;68(12):1518-1522. doi: 10.11150/kansenshogakuzasshi1970.68.1518

 

  1. Miklasińska M, Kępa M, Wojtyczka RD, Idzik D, Dziedzic A, Wąsik TJ. Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules. 2016;21(2):244. doi: 10.3390/molecules21020244

 

  1. Liu S, Zhang Q, Li H, Qiu Z, Yu Y. Comparative assessment of the antibacterial efficacies and mechanisms of different tea extracts. Foods. 2022;11(4):620. doi: 10.3390/foods11040620
Share
Back to top