Shellac-based encapsulation model incorporating calcium fluoride for oral care applications
Fluoride-releasing systems are widely incorporated into dental products to prevent caries; however, fluoride ions readily interact with calcium compounds in oral formulations, resulting in deactivation and reduced effectiveness. To overcome this limitation, a simple extrusion method was designed to fabricate shellac-based biopolymer beads capable of encapsulating fluoride. The resulting beads had an average diameter of 2.54 ± 0.22 mm, with theoretical analysis supporting particle size dependence on extrusion tube diameter. Structural and stability characterization was conducted using optical and electron microscopy, elemental analysis, vibrational spectroscopy, and thermal profiling, confirming in situ calcium fluoride formation and effective pore sealing. Key formulation parameters—including shellac concentration, dissolution time, bead formation time, and hardening time—were optimized to improve bead morphology and fluoride retention. An in situ blocking strategy, involving controlled precipitation of calcium fluoride within the bead matrix during formulation, was implemented to minimize fluoride diffusion and enhance long-term stability. This approach achieved 70% active fluoride retention over 90 days. The proposed encapsulation model holds promise for applications in toothpaste and other dental care products.
- Fejerskov O, Nyvad B, Kidd E. Dental Caries: The Disease and Its Clinical Management. United States: John Wiley and Sons; 2015. doi: 10.1038/s41415-025-8727-y
- Buzalaf MA.R. Fluoride and the Oral Environment. Abingdon: Karger Medical and Scientific Publishers; 2011. doi: 10.1159/isbn.978-3-8055-9659-6
- Tubert‐Jeannin S, Auclair C, Amsallem E, et al. Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children. Cochrane Database Syst Rev. 2011;2011(12):CD007592. doi: 10.1002/14651858.cd011850.pub2
- Hoxha A, Gillam DG, Agha A, et al. Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dent Mater. 2020;36(8):973-986. doi: 10.1016/j.dental.2020.04.011
- Dupare R, Kumar P, Dupare A, Jain R, Chitguppi R. Intraoral slow-release fluoride devices. Int J Clin Prev Dent Res. 2014;1:37-41.
- Siriruk N, Rudee S, Varangkanar J, et al. Guideline on use of fluoride in dentistry. J Dent Assoc Thai. 2023;73(2):92-103. doi: 10.14456/jdat.2023.11
- Bijella MFTB, Brighenti FL, Bijella MFB, Buzalaf MAR. Fluoride kinetics in saliva after the use of a fluoride-containing chewing gum. Braz Oral Res. 2005;19:256-260. doi: 10.1590/s1806-83242005000400004
- Santos MG, Carpinteiro DA, Thomazini M, et al. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Int Food Res. 2014;66:454-462. doi: 10.1016/j.foodres.2014.10.010
- Hattab FN. The state of fluorides in toothpastes. J Dent. 1989;17(2):47-54. doi: 10.1016/0300-5712(89)90129-2
- Wason SK, Inventor JM. Huber Corporation, Assignee. High Fluoride Compatibility Dentifrice Abrasives and Compositions. U.S. Patents No. 4,340,583; 1982.
- Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011;1:1806-1815. doi: 10.1016/j.profoo.2011.09.265
- Rabanel JM, Banquy X, Zouaoui H, Mokhtar M, Hildgen P. Progress technology in microencapsulation methods for cell therapy. Biotechnol Prog. 2009;25(4):946-963. doi: 10.1002/btpr.226
- Comunian TA, Favaro-Trindade CS. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll. 2016;61:442-457. doi: 10.1016/j.foodhyd.2016.06.003
- Ma P, Lai X, Luo Z, et al. Recent advances in mechanical force-responsive drug delivery systems. Nanoscale Adv. 2022;4(17):3462-3478. doi: 10.1039/d2na00420h
- Foglio Bonda A, Candiani A, Pertile M, Giovannelli L, Segale L. Shellac gum/carrageenan alginate-based core-shell systems containing peppermint essential oil formulated by mixture design approach. Gels. 2021;7(4):162. doi: 10.3390/gels7040162
- Thombare N, Kumar S, Kumari U, et al. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int J Biol Macromol. 2022;215:203-223. doi: 10.1016/j.ijbiomac.2022.06.090
- Miranda M, Sun X, Ference C, et al. Nano-and micro-carnauba wax emulsions versus shellac protective coatings on postharvest citrus quality. J Am Soc Hortic Sci. 2021;146(1):40-49. doi: 10.21273/jashs04972-20
- Yuan Y, He N, Dong L, et al. Multiscale shellac-based delivery systems: From macro- to nanoscale. ACS Nano. 2021;15(12):18794-18821. doi: 10.1021/acsnano.1c07121
- Zabot GL, Schaefer Rodrigues F, Polano Ody L, et al. Encapsulation of bioactive compounds for food and agricultural applications. Polymers (Basel). 2022;14(19):4194. doi: 10.3390/polym14194194
- Chen Y, Zhu Z, Shi K, et al. Shellac-based materials: Structures, properties, and applications. Int J Biol Macromol. 2024;279:135102. doi: 10.1016/j.ijbiomac.2024.135102
- Baxmann M, Baráth Z, Kárpáti K. Application and future utilization of shellac in orthodontics: A systematic review. J Clin Med. 2024;13(10):2917. doi: 10.3390/jcm13102917
- Hoang-Dao BT, Hoang-Tu H, Tran-Thi NN, et al. Clinical efficiency of a natural resin fluoride varnish (Shellac F) in reducing dentin hypersensitivity. J Oral Rehabil. 2009;36(2):124-131. doi: 10.1111/j.1365-2842.2008.01907.x
- Sharma S, Samrat, Goyal P, et al. Shellac: Bridging the gap between chemistry and sustainability-a comprehensive review of its multifunctional coating applications for food, drug, and paper packaging. J Macromol Sci Part A. 2024;61(10):691-723. doi: 10.1080/10601325.2024.2400510
- Martău GA, Mihai M, Vodnar DC. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers (Basel). 2019;11(11):1837. doi: 10.3390/polym11111837
- Li L, Fang Y, Vreeker R, Appelqvist I, Mendes E. Reexamining the egg-box model in calcium- alginate gels with X-ray diffraction. Biomacromolecules. 2007;8(2):464-468. doi: 10.1021/bm060550a
- Tako M, Teruya T, Tamaki Y, Uechi K, Konishi T. Molecular origin for strong agarose gels: Multi-stranded hydrogen bonding. J Polym Biopolym Phys Chem. 2021;9:13-19. doi: 10.12691/jpbpc-9-1-2
- Detsi A, Kavetsou E, Kostopoulou I, et al. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics. 2020;12(7):669. doi: 10.3390/pharmaceutics12070669
- Lüdecke D. Ggeffects: Tidy data frames of marginal effects from regression models. J Open Source Softw. 2018;3(26):772. doi: 10.21105/joss.00772
- Mendiburu FD, Simon R. Agricolae-ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ. 2015;3:e1404v1.doi: 10.7287/peerj.preprints.1404v1
- Noppradit B, Uthaipan N, Klinnawee L, Kongtragoul P, Phengdaam A. Antifungal copper nanocomposite-rubber compound for tree wound dressings. Ind Crops Prod. 2024;222:119798. doi: 10.1016/j.indcrop.2024.119798
- Sugiura S, Nakajima M, Seki M. Preparation of monodispersed polymeric microspheres over 50 μm employing microchannel emulsification. Ind Eng Chem Res. 2002;41(16):4043-4047. doi: 10.1021/ie0201415
- Tang L, Fan TM, Borst LB, Cheng J. Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. ACS Nano. 2012;6(5):3954-3966. doi: 10.1021/nn300149c
- Ning S, Long Y, Zhao Y, et al. Research on micro-liquid dispensing driven by a syringe pump with the consideration of air volume. Microsyst Technol. 2021;27:3653-3666. doi: 10.1007/s00542-020-05133-9
- Lee BB, Ravindra P, Chan ES. A critical review: Surface and interfacial tension measurement by the drop weight method. Chem Eng Commun. 2008;195(8):889-924. doi: 10.1080/00986440801905056
- Hou B, Wu C, Liu H, et al. Shape approximation of sessile droplet by the equivalence between vertical capillary force and hydrostatic pressure. Colloids Surf A Physicochem Eng Asp. 2023;656:130203. doi: 10.1016/j.colsurfa.2022.130203
- Hernandez-Aguilar JR, Cunningham R, Finch JA. A test of the Tate equation to predict bubble size at an orifice in the presence of frother. Int J Miner Process. 2006;79(2):89-97. doi: 10.1016/j.minpro.2005.12.003
- Ross CT. Pressure Vessels: External Pressure Technology. Netherlands: Elsevier; 2011. doi: 10.1533/9780857092496
- Ghoshal S, Khan MA, Gul-E-Noor F, Khan RA. Gamma radiation induced biodegradable shellac films treated by acrylic monomer and ethylene glycol. J Macromol Sci Part A. 2009;46(10):975-982. doi: 10.1080/10601320903158594
- Van der Weijden G, Timmerman M, Versteeg P, Piscaer M, Van der Velden U. High and low brushing force in relation to efficacy and gingival abrasion. J Clin Periodontol. 2004;31(8):620-624. doi: 10.1111/j.1600-051x.2004.00529.x
- Mudalip SKA, Bakar MRA, Adam F, Jamal P. Structures and hydrogen bonding recognition of mefenamic acid form I crystals in mefenamic acid/ethanol solution. Int J Chem Eng Appl. 2013;4(3):124-128. doi: 10.7763/ijcea.2013.v4.277
- Golub P, Doroshenko I, Pogorelov V, et al. Temperature evolution of cluster structures in ethanol. Dataset Papers Sci. 2013;2013:473294. doi: 10.1155/2013/473294
- Yan G, Cao Z, Devine D, Penning M, Gately NM. Physical properties of shellac material used for hot melt extrusion with potential application in the pharmaceutical industry. Polymers (Basel). 2021;13(21):3723. doi: 10.3390/polym13213723
- Ali MA, Volmert B, Evans CM, Braun PV. Static and dynamic gradient based directional transportation of neutral molecules in swollen polymer films. Angew Chem Int Ed Engl. 2022;61(41):e202206061. doi: 10.1002/anie.202206061
- Strawhecker KE, Kumar SK, Douglas JF, Karim A. The critical role of solvent evaporation on the roughness of spin-cast polymer films. Macromol. 2001;34(14):4669-4672. doi: 10.1021/ma001440d
- Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28(8):1223-1270. doi: 10.1016/S0079-6700(03)00045-5
- Narasimhan B. Mathematical models describing polymer dissolution: Consequences for drug delivery. Adv Drug Deliv Rev. 2001;48(2-3):195-210. doi: 10.1016/s0169-409x(01)00117-x
- Ito Y, Shiina S, Tokue I. Influence of expansion of polymer molecules in solution on non‐newtonian flow behavior. Makromol Chem. 1982;183(2):505-510. doi: 10.1002/macp.1982.021830219
- Yoo E, Im S. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B Polym Phys. 1999;37(13):1357-1366. doi: 10.1002/(sici)1099-0488(19990701)37:13<1357::aid-polb2>3.0.CO;2-Q
- Li H, Kruteva M, Mystek K, et al. Macro-and microstructural evolution during drying of regenerated cellulose beads. ACS Nano. 2020;14(6):6774-6784. doi: 10.1021/acsnano.0c00171
- Wu D, Xu F, Sun B, et al. Design and preparation of porous polymers. Chem Rev. 2012;112(7):3959-4015. doi: 10.1021/cr200440z
- Gokmen MT, Du Prez FE. Porous polymer particles-a comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci. 2012;37(3):365-405. doi: 10.1016/j.progpolymsci.2011.07.006
- Ballai G, Kotnik T, Finšgar M, et al. Highly porous polymer beads coated with nanometer-thick metal oxide films for photocatalytic oxidation of Bisphenol A. ACS Appl Nano Mater. 2023;6(21):20089-20098. doi: 10.1021/acsanm.3c03891
- Fashandi H, Karimi M. Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer. 2012;53(25):5832-5849. doi: 10.1016/j.polymer.2012.10.003
- Yuan Y, Zhang S, Ma M, Xu Y, Wang D. Delivery of curcumin by shellac encapsulation: Stability, bioaccessibility, freeze-dried redispersibility, and solubilization. Food Chem X. 2022;15:100431. doi: 10.1016/j.fochx.2022.100431
- Muhammad DRA, Doost AS, Gupta V, et al. Stability and functionality of xanthan gum-shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocoll. 2020;100:105377. doi: 10.1016/j.foodhyd.2019.105377
- Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in soft matter. Soft Matter. 2020;16(48):10809-10859. doi: 10.1039/d0sm01371d
- Koeser J, Carvalho TS, Pieles U, Lussi A. Preparation and optimization of calcium fluoride particles for dental applications. J Mater Sci Mater Med. 2014;25(7):1671-1677. doi: 10.1007/s10856-014-5200-x
- Wentink GA, Van Den Ingh TS. Oral administration of calcium chloride‐containing products: Testing for deleterious side‐effects. Vet Q. 1992;14(2):76-79. doi: 10.1080/01652176.1992.9694334
- Kimura H, Kai J. Phase change stability of CaCl2 6H2O. Sol Energy. 1984;33(6):557-563. doi: 10.1016/0038-092X(84)90011-2
- Fedorov P, Luginina AA, Alexandrov AA, Chernova EV. Transformation of calcite CaCO3 to fluorite CaF2 by action of KF solution. J Fluor Chem. 2021;251:109898. doi: 10.1016/j.jfluchem.2021.109898
- Wu L, Li F, Morrow BR, et al. A novel antimicrobial and remineralizing toothpaste containing CaCl2/chitosan microspheres. Am J Dent. 2018;31(3):149.
- Markovic M, Takagi S, Chow LC, Frukhtbeyn S. Calcium fluoride precipitation and deposition from 12 mmol/L fluoride solutions with different calcium addition rates. J Res Natl Inst Stand Technol. 2009;114(5):293-301. doi: 10.6028/jres.114.021
- Onyeabor F, Paik A, Kovvasu S, et al. Optimization of preparation and preclinical pharmacokinetics of celastrol-encapsulated silk fibroin nanoparticles in the rat. Molecules. 2019;24(18):3271. doi: 10.3390/molecules24183271
- Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71.
- Djira GD, Hothorn LA, Tsong Y. Equivalence tests for shelf life and average drug content in stability studies. J Biopharm Stat. 2008;18(5):985-995. doi: 10.1080/10543400802287230
