Cold-sintered bioceramics for medical applications: State of the art and further perspectives
Cold sintering has recently emerged as a promising approach for preparing dense ceramic materials and composites at low temperatures. It relies on utilizing transient, typically externally introduced, liquid phases to accelerate material diffusion and densification under applied pressure. Cold-sintered bioceramics, especially those prepared at temperatures below 100°C, may open up numerous possibilities, not only in producing dense ceramics with refined microstructural properties and reduced time/energy costs, but also in developing multifunctional platforms containing bioactive compounds, therapeutics, growth factors, and signaling molecules for enhanced and targeted biological responses. Cold sintering in the presence of liquids inherently involves dissolution and nucleation, which become particularly intricate under applied pressures and elevated temperatures. Pseudo bio-mineralization, an auspicious approach for tailoring synthetic bone grafts toward targeted mechanics, may serve as a viable route for enhancing the densification mechanisms inherent to cold sintering. We have carefully analyzed the current state of the art in cold-sintered bioceramics and the results achieved, with a focus on the chemistry of the employed liquids and the corresponding changes upon sintering, the selection of transient phases, and mineral nucleation, while also addressing the potential for developing new biomaterials. Despite the widely accepted classical dissolution– precipitation strategy, no clear roadmap can yet be defined regarding the type and amount of liquid phase that should be applied, at least in the case of hydroxyapatite (HAp) densification–the most important representative of calcium phosphates. We strongly advocate the use of water as the transient liquid of choice in the cold sintering of HAp-based bioceramics, instead of strong acids/bases, and emphasize the importance of understanding the various processes and parameters that govern and connect solution chemistry to mineral nucleation. This understanding will enable the advancement of cold sintering protocols in a target-oriented manner, and we provide perspectives on future developments, including practical advice.
- Kim HJ, Lagarrigue P, Oh JM, et al. Biocompatible MgFeCO3 layered double hydroxide (LDH) for bone regeneration-low-temperature processing through cold sintering and freeze-casting. Bioengineering. 2023;10(6):734. doi: 10.3390/bioengineering10060734
- Lin HY, Huang YK, Hsu PY, Tuan WH, Naito M. Sintering of degradable bone substitutes at room temperature. Ceram Int. 2021;47(15):21714-21720. doi: 10.1016/j.ceramint.2021.04.185
- Lukić M, Stojanović Z, Škapin SD, et al. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J Eur Ceram Soc. 2011;31(1-2):19-27. doi: 10.1016/j.jeurceramsoc.2010.09.006
- Lukić MJ, Škapin SD, Marković S, Uskoković D. Processing route to fully dense nanostructured HAp bioceramics: From powder synthesis to sintering. J Am Ceram Soc. 2012;95(11):3394-3402. doi: 10.1111/j.1551-2916.2012.05376.x
- Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A. Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties. Acta Biomater. 2010;6(9):3782-3790. doi: 10.1016/j.actbio.2010.03.016
- Luginina M, Orru R, Cao G, et al. First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: Toward highly-resorbable reactive bioceramics. J Mater Chem B. 2020;8(4):629-635. doi: 10.1039/C9TB02121C
- Bulina NV, Titkov AI, Baev SG, et al. Laser sintering of hydroxyapatite for potential fabrication of bioceramic scaffolds. Mater Today Proc. 2021;37:4022-4026. doi: 10.1016/j.matpr.2020.06.199
- Galotta A, Sglavo VM. The cold sintering process: A review on processing features, densification mechanisms and perspectives. J Eur Ceram Soc. 2021;41(16):1-17. doi: 10.1016/j.jeurceramsoc.2021.09.024
- Guo J, Guo H, Baker AL, et al. Cold sintering: A paradigm shift for processing and integration of ceramics. Angew Chem Int Ed Engl. 2016;55(38):11457-11461. doi: 10.1002/anie.201605443
- Lu K, Xu Y, Gao S, et al. Biomimetic design of advanced ceramics for hard tissue repair. J Am Ceram Soc. 108:e20642. doi: 10.1111/jace.20642
- Guo J, Floyd R, Lowum S, et al. Cold sintering: Progress, challenges, and future opportunities. Ann Rev Mater Res. 2019;49:275-295. doi: 10.1146/annurev-matsci-070218-010041
- Hu H, Wang Q, Gao H, et al. Bioprocessing-inspired water-mediated crystallization and densification of strong nacre-like aragonite ceramic from hydrated amorphous precursor. Adv Funct Mater. 2025;35:2421628. doi: 10.1002/adfm.202421628
- Wang X, Zhang H, Yu X, et al. Effects of water on cold-sintered highly dense dicalcium phosphate anhydrous bioceramic using its hydrate. J Am Ceram Soc. 2024;107(7):4631-4640. doi: 10.1111/jace.19748
- Oliveira RLMS, Antonelli E, Montufar EB, De Trichês ES. Cold sintering of β-tricalcium phosphate/bioactive glass composites. Ceram Int. 2024;50(11):18138-18145. doi: 10.1016/j.ceramint.2024.02.297
- Rubenis K, Zemjane S, Vecstaudza J, Bitenieks J, Locs J. Densification of amorphous calcium phosphate using principles of the cold sintering process. J Eur Ceram Soc. 2021;41(1):912-919. doi: 10.1016/j.jeurceramsoc.2020.08.074
- Nečina V. Transparent ceramics by cold sintering process - challenges and opportunities. J Eur Ceram Soc. 2025;45(13):117519. doi: 10.1016/j.jeurceramsoc.2025.117519
- Seo Y, Goto T, Cho S, Sekino T. Densification of transparent hydroxyapatite ceramics via cold sintering process combined with biomineralization. J Eur Ceram Soc. 2024;44(6):4285-4293. doi: 10.1016/j.jeurceramsoc.2023.12.092
- Lukić MJ, Sezen M, Veljović Đ, Mraković A. A facile route for hydroxyapatite densification with an increased heating rate. Mater Lett. 2017;207:12-15. doi: 10.1016/j.matlet.2017.07.020
- Kumar M, Ben Achour MA, Lasgorceix M, et al. Densification of hydroxyapatite through cold sintering process: Role of liquid phase chemistry and physical characteristic of HA powder. Open Ceram. 2024;17:100566. doi: 10.1016/j.oceram.2024.100566
- Galotta A, Agostinacchio F, Motta A, Dirè S, Sglavo VM. Mechanochemical synthesis and cold sintering of mussel shell-derived hydroxyapatite nano-powders for bone tissue regeneration. J Eur Ceram Soc. 2023;43(2):639-647. doi: 10.1016/j.jeurceramsoc.2022.09.024
- Shen HZ, Guo N, Zhao L, Shen P. Role of ion substitution and lattice water in the densification of cold-sintered hydroxyapatite. Scrip Mater. 2020;177:141-145. doi: 10.1016/j.scriptamat.2019.10.024
- Ul Hassan M, Akmal M, Ryu HJ. Cold sintering of as-dried nanostructured calcium hydroxyapatite without using additives. J Mater Res Technol. 2021;11:811-822. doi: 10.1016/j.jmrt.2021.01.060
- Akmal M, Ul Hassan M, Afzal M, Ryu HJ. Novel approach to sintering hydroxyapatite-alumina nanocomposites at 300 C. Mater Chem Phys. 2021;260:124187. doi: 10.1016/j.matchemphys.2020.124187
- Huang Z, Zuo Y, Zheng J, Deng M, Chen R, Wang H. Utilizing the cold sintering process for the SiO2-HA glass-ceramics. Ceram Int. 2025;51(8):10650-10659. doi: 10.1016/j.ceramint.2024.12.496
- Hu Y, Jin Q, Wang X, Lin T. Cold-sintered self-assembly of layer-ordered hydroxyapatite nanowire arrays for efficient oil/water separation. J Eur Ceram Soc. 2025;45(3):116981. doi: 10.1016/j.jeurceramsoc.2024.116981
- Sharipova A, Böhme A, Fritsch M, Ahlhelm M. A concept for functional bioceramics with embedded metallization using cold sintering. Open Ceram. 2025;21:100716. doi: 10.1016/j.oceram.2024.100716
- Kumar M, Ben Achour MA, Ölmez V, et al. Consolidation behavior of HA-PLA nanocomposites during cold sintering process: Influence of HA-to-PLA ratio and the plasticizing effect of PLA. Mater Today Commun. 2025;45:112322. doi: 10.1016/j.mtcomm.2025.112322
- Hu Y, Xia D, Shen H, et al. Cold sintering constructed in situ drug-loaded high strength HA-PLA composites: Potential bone substitution material. Ceram Int. 2023;49(7):11655-11663. doi: 10.1016/j.ceramint.2022.12.014
- Galotta A, Demir Ö, Marsan O, et al. Apatite/chitosan composites formed by cold sintering for drug delivery and bone tissue engineering applications. Nanomaterials (Basel). 2024;14(5):441. doi: 10.3390/nano14050441
- Seo Y, Nawa S, Goto T, Cho S, Sekino T. Densification of hydroxyapatite/zirconia nanocomposites fabricated via low-temperature mineralization sintering process and their mechanical properties. Sci Rep. 2025;15(1):2479. doi: 10.1038/s41598-025-85116-w
- Guo N, Shen HZ, Jin Q, Shen P. Hydrated precursor-assisted densification of hydroxyapatite and its composites by cold sintering. Ceram Int. 2021;47(10, Part A):14348-14353. doi: 10.1016/j.ceramint.2021.01.294
- Yan J, Clifton KB, Mecholsky JJ, Reep RL. Fracture toughness of manatee rib and bovine femur using a chevron-notched beam test. J Biomech. 2006;39(6):1066-1074. doi: 10.1016/j.jbiomech.2005.02.016
- Vecstaudza J, Locs J. Novel preparation route of stable amorphous calcium phosphate nanoparticles with high specific surface area. J Alloys Compounds. 2017;700:215-222. doi: 10.1016/j.jallcom.2017.01.038
- Pan HB, Darvell BW. Solubility of hydroxyapatite by solid titration at pH 3-4. Archf Oral Biol. 2007;52(7):618-624. doi: 10.1016/j.archoralbio.2006.12.007
- Margolis HC, Moreno EC. Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions. Calcif Tissue Int. 1992;50(2):137-143. doi: 10.1007/BF00298791
- Wang D, Xie Y, Jaisi DP, Jin Y. Effects of low-molecular-weight organic acids on the dissolution of hydroxyapatite nanoparticles. Environ Sci Nano. 2016;3(4):768-779. doi: 10.1039/C6EN00085A
- Larsen MJ, Jensen SJ. The hydroxyapatite solubility product of human dental enamel as a function of pH in the range 4.6-7.6 at 20 degrees C. Arch Oral Biol. 1989;34(12):957-961. doi: 10.1016/0003-9969(89)90052-6
- Hu H, Wang Q, Chen J, et al. Bioprocessing-inspired cold sintering of amorphous calcium carbonate. J Am Ceram Soc. 2025;108:e20682. doi: 10.1111/jace.20682
- Zhu J, Li F, Hou Y, et al. Near-room-temperature water-mediated densification of bulk van der Waals materials from their nanosheets. Nat Mater. 2024;23(5):604-611. doi: 10.1038/s41563-024-01840-0
- Li H, Zhong J, Shen J, et al. Water-assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization. J Am Ceram Soc. 2022;105(4):2945-2954. doi: 10.1111/jace.18268
- Lukić MJ, Wiedenbeck E, Reiner H, Gebauer D. Chemical trigger toward phase separation in the aqueous Al(III) system revealed. Sci Adv. 2020;6(23):eaba6878. doi: 10.1126/sciadv.aba6878
- McDowell H, Gregory TM, Brown WE. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37°C. J Res Natl Bur Stand A Phys Chem. 1977;81A(2-3):273-281. doi: 10.6028/jres.081A.017
- Prakash KH, Kumar R, Ooi CP, Cheang P, Khor KA. Apparent solubility of hydroxyapatite in aqueous medium and its influence on the morphology of nanocrystallites with precipitation temperature. Langmuir. 2006;22(26):11002-11008. doi: 10.1021/la0621665
- McDonogh DP, Gale JD, Raiteri P, Gebauer D. Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization. Nat Commun. 2024;15(1):3359. doi: 10.1038/s41467-024-47721-7
- Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters. Science. 2008;322(5909):1819-1822. doi: 10.1126/science.1164271
- Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H. Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev. 2014;43(7):2348-2371. doi: 10.1039/C3CS60451A
- Zhang Q, Yan S, Wang J, Xu D. Advances and challenges in computational simulation of calcium phosphate nucleation. Cryst Res Technol. 2025;60:e70014. doi: 10.1002/crat.70014
- Cho YS, Heo CM, Gebauer D, Yang SH. Control of hydroxyapatite mineralization in an orthogonal diffusion system. Cryst Growth Design. 2025;25(9):2960-2969. doi: 10.1021/acs.cgd.5c00020
- McDonogh DP, Kirupananthan P, Gebauer D. Counterintuitive crystallization: Rate effects in calcium phosphate nucleation at near-physiological pH. Cryst Growth Design. 2023;23(10):7037-7043. doi: 10.1021/acs.cgd.3c00851
- Omelon S, Ariganello M, Bonucci E, Grynpas M, Nanci A. A review of phosphate mineral nucleation in biology and geobiology. Calcif Tissue Int. 2013;93(4):382-396. doi: 10.1007/s00223-013-9784-9
- Vaidya SN, Sugandhi V. Pressure induced amorphization in calcium phosphates. J Mater Sci. 1999;34(15):3769-3778. doi: 10.1023/A:1004692514500
- Shakhvorostov D, Müser MH, Mosey NJ, et al. On the pressure-induced loss of crystallinity in orthophosphates of zinc and calcium. J Chem Phys. 2008;128(7):074706. doi: 10.1063/1.2837809
- Rajasekharan AK, Andersson M. Role of nanoscale confinement on calcium phosphate formation at high supersaturation. Cryst Growth Design. 2015;15(6):2775-2780. doi: 10.1021/acs.cgd.5b00139
- Wallace AF, Hedges LO, Fernandez-Martinez A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science. 2013;341(6148):885-889. doi: 10.1126/science.1230915
- Gebauer D, Gale JD, Cölfen H. Crystal nucleation and growth of inorganic ionic materials from aqueous solution: Selected recent developments, and implications. Small. 2022;18(28):2107735. doi: 10.1002/smll.202107735
- Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9(12):1004-1009. doi: 10.1038/nmat2875
- Kellermeier M, Cölfen H, Gebauer D. Chapter three - investigating the early stages of mineral precipitation by potentiometric titration and analytical ultracentrifugation. In: De Yoreo JJ, editor. Methods in Enzymology. Research Methods in Biomineralization Science. Vol 532. United States: Academic Press; 2013. p. 45-69. doi: 10.1016/B978-0-12-416617-2.00003-5
- Gebauer D. How can additives control the early stages of mineralisation? Minerals. 2018;8(5):179. doi: 10.3390/min8050179
- Gindele MB, Malaszuk KK, Peter C, Gebauer D. On the binding mechanisms of calcium ions to polycarboxylates: Effects of molecular weight, side chain, and backbone chemistry. Langmuir. 2022;38(47):14409-14421. doi: 10.1021/acs.langmuir.2c01662
- Lukić MJ, Marquardt N, Schmalz T, Gebauer D. Peptide-mediated Al(III) (oxy)(hydr)oxide formation: The specific stages of phase separation for additive interactions matter. Inorg Chem Front. 2025;12(20):6235-6245. doi: 10.1039/D5QI00870K
- Chen S, Liu D, Guo Q, et al. Facile construction of mechanically robust and highly osteogenic materials for bone regeneration. Mater Today Bio. 2025;32:101809. doi: 10.1016/j.mtbio.2025.101809
- Chen W, Shi J, Liu D, et al. Wet-adhesive and antibacterial PAH-TPP coacervates with self-mineralizing capability for cranial flap fixation. Bioact Mater. 2025;52:1-16. doi: 10.1016/j.bioactmat.2025.05.024
- Li X, Guo B, Xiao Y, Yuan T, Fan Y, Zhang X. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics. J Mater Sci Mater Med. 2015;27(1):5. doi: 10.1007/s10856-015-5617-x
- Dorozhkin SV, Schmitt M, Bouler JM, Daculsi G. Chemical transformation of some biologically relevant calcium phosphates in aqueous media during a steam sterilization. J Mater Sci Mater Med. 2000;11(12):779-786. doi: 10.1023/A:1008949428203
- Yang CW, Lui TS. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater. 2009;5(7):2728-2737. doi: 10.1016/j.actbio.2009.03.014
- Gomes AD, De Oliveira AAR, Houmard M, Nunes EHM. Gamma sterilization of collagen/hydroxyapatite composites: Validation and radiation effects. Appl Radiat Isot. 2021;174:109758. doi: 10.1016/j.apradiso.2021.109758
- Jabr A, Jones HN, Argüelles AP, Trolier-McKinstry S, Randall C, Bermejo R. Scaling up the cold sintering process of ceramics. J Eur Ceram Soc. 2023;43(12):5319-5329. doi: 10.1016/j.jeurceramsoc.2023.04.061
