Biomaterials Translational ›› 2022, Vol. 3 ›› Issue (2): 162-171.doi: 10.12336/biomatertransl.2022.02.008
• RESEARCH ARTICLE • Previous Articles
Hui Li1,2, Peng Yang1, JiHyeon Hwang1, Parasmani Pageni1, Alan W. Decho3, Chuanbing Tang1,*()
Received:
2022-04-07
Revised:
2022-05-19
Accepted:
2022-06-13
Online:
2022-06-28
Published:
2022-06-28
Contact:
Chuanbing Tang
E-mail:tang4@mailbox.sc.edu
About author:
Chuanbing Tang, tang4@mailbox.sc.edu.
Li, H.; Yang, P.; Hwang, J.; Pageni, P.; Decho, A. W.; Tang, C. Antifouling and antimicrobial cobaltoceniumcontaining metallopolymer double-network hydrogels. Biomater Transl. 2022, 3(2), 162-171.
Figure 1. (A) Synthesis and homo-polymerization of 2-cobaltocenium amidoethyl methacrylate chloride (CoAEMACl). (B) Preparation of penicillin-conjugated cobaltocenium metallopolymer double-network (PCoPeni-DN) hydrogel via free radical polymerization and ion exchange. AIBN: azobisisobutyronitrile; AM: acrylamide; CoAEMAPF6: 2-cobaltocenium amidoethyl methacrylate hexafluorophosphate; HEMA: hydroxyethyl methacrylate; MBA: N,N′-methylenebisacrylamide; PCoCl: chloride-paired cobaltocenium polymer; PEGDMA: poly(ethylene glycol) dimethacrylate.
Sample | First network | Second network | Penicillin-G content (mg/g) | EWC (wt %) | σmax(MPa) | λmax(%) |
---|---|---|---|---|---|---|
SN-1 | PCoCl | - | - | 97.5 | 0.014 | 37 |
SN-2 | - | PAM | - | 94.3 | 0.55 | 91 |
DN-0 | PHEMA | PAM | - | 72.4 | 0.64 | 53 |
DN-1 | PCoCl | PAM | - | 95.1 | 0.47 | 49 |
DN-2 | PAM | PAM | - | 93.2 | 3.74 | 85 |
DN-3 | P(CoCl-AM) | PAM | - | 94.3 | 3.22 | 74 |
DN-4 | P(CoCl-HEMA) | PAM | - | 87.9 | 1.86 | 66 |
DN-5 | P(CoCl-AM) | PAM | 7.41 | 91.7 | 5.81 | 79 |
DN-6 | P(CoCl-HEMA) | PAM | 6.85 | 83.5 | 2.45 | 68 |
Table 1. The network compositions of hydrogels, and their EWC and mechanical properties
Sample | First network | Second network | Penicillin-G content (mg/g) | EWC (wt %) | σmax(MPa) | λmax(%) |
---|---|---|---|---|---|---|
SN-1 | PCoCl | - | - | 97.5 | 0.014 | 37 |
SN-2 | - | PAM | - | 94.3 | 0.55 | 91 |
DN-0 | PHEMA | PAM | - | 72.4 | 0.64 | 53 |
DN-1 | PCoCl | PAM | - | 95.1 | 0.47 | 49 |
DN-2 | PAM | PAM | - | 93.2 | 3.74 | 85 |
DN-3 | P(CoCl-AM) | PAM | - | 94.3 | 3.22 | 74 |
DN-4 | P(CoCl-HEMA) | PAM | - | 87.9 | 1.86 | 66 |
DN-5 | P(CoCl-AM) | PAM | 7.41 | 91.7 | 5.81 | 79 |
DN-6 | P(CoCl-HEMA) | PAM | 6.85 | 83.5 | 2.45 | 68 |
Figure 2. Compression stress-strain plots of PCoCl-DN hydrogels (DN-3 and DN-4) and PCoPeni-DN hydrogels (DN-5 and DN-6) (upper). Photographs showing reversible compression of hydrogel (DN-5) (lower). A video of compression testing is included in the Additional Video 1. DN: double network; PCoCl-DN: chloride-paired cobaltocenium-containing double-network; PCoPeni-DN: penicillin-conjugated cobaltocenium metallopolymer double-network.
Figure 3. (A) DSC curves of different DN hydrogels and DI water. (B) Enthalpy change (∆Hf) associated with the melting of freezable water per weight of a hydrogel measured by DSC. The enthalpy change for the melting of bulk water is ∆Hw = 335.2 J/g. ∆Hf: the enthalpy associated with the melting of freezable water and free water in a hydrogel; ∆Hw: the enthalpy for the melting.
Figure 4. Average fluorescence intensities of cobaltocenium-containing DN hydrogel surfaces after immersing into 0.5 mg/mL of BSA-FITC solution; fluorescence microscopy images are attached. BSA-FITC: fluorescein isothiocyanate-conjugated bovine serum albumin; DN: double-network.
Figure 5. (A-G) Images of Escherichia coli (E. coli) colonies of viable adherent bacterial cells on the surfaces of glass slides (A), glass slides with penicillin-G sodium salts (B), DN-2 (C), DN-3 (D), DN-4 (E), DN-5 (F) and DN-6 (G). (H) Viable adherent fractions of E. coli on the surfaces of samples from the above spread plates. DN: double-network; Peni: penicillin-G.
Figure 6. (A) Optical density at 600 nm (OD 600) of Escherichia coli (E. coli) culture solution upon 24 hours incubation with different hydrogels. (B) OD600 values of the E. coli suspension washed from different hydrogels. OD 600 of DI water is about 0.03. DI: deionized; DN: double-network.
Additional Figure 1. 1H NMR spectrum of monomer CoAEMACl. 1H NMR: proton nuclear magnetic resonance; CoAEMACl: 2-cobaltocenium amidoethyl methacrylate chloride; D2O: deuterium oxide.
Additional Figure 5. Confocal laser scanning microscopy images of live and dead Escherichia coli cells washed from the surfaces of glass (control) and the surface of hydrogels DN-2, DN-3, DN-4, DN-5 and DN-6. For DN-2, most of bacterial cells were fluoresced green, indicating that these cells were viable. A majority of dead cells (stained red) appeared on the DN-3 surface. Significantly most cells were dead with very few live cells appearing on the DN-5 surface. For DN-4 and DN-6, few live and dead bacteria cells were observed on their surfaces because of their good antifouling and antibacterial properties. Green denotes live cells; red denotes dead cells. Scale bars: 100 μm.
1. | Peppas, N. A.; Hoffman, A. S.1.3.2E - Hydrogels. In Biomaterials Science: an Introduction to Materials in Medicine, 4th ed. Wagner, W. R.; Sakiyama-Elbert, S. E.; Zhang, G.; Yaszemski, M. J., eds. Academic Press: 2020; pp 153-166. |
2. |
Hoffman, A. S. Hydrogels for biomedical applications. Adv Drug Del Rev. 2012, 64, 18-23.
doi: 10.1016/j.addr.2012.09.010 URL |
3. |
Erol, O.; Pantula, A.; Liu, W.; Gracias, D. H. Transformer Hydrogels: A Review. Adv Mater Technol. 2019, 4, 1900043.
doi: 10.1002/admt.201900043 URL |
4. |
Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev. 2020, 120, 7642-7707.
doi: 10.1021/acs.chemrev.0c00345 URL |
5. |
Fan, H.; Gong, J. P. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules. 2020, 53, 2769-2782.
doi: 10.1021/acs.macromol.0c00238 URL |
6. |
Nascimento, D. M.; Nunes, Y. L.; Figueirêdo, M. C. B.; de Azeredo, H. M. C.; Aouada, F. A.; Feitosa, J. P. A.; Rosa, M. F.; Dufresne, A. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem. 2018, 20, 2428-2448.
doi: 10.1039/C8GC00205C URL |
7. | Yang, Y.; Wang, X.; Yang, F.; Wang, L.; Wu, D. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv Mater. 2018, 30, e1707071. |
8. |
Yang, C. H.; Wang, M. X.; Haider, H.; Yang, J. H.; Sun, J. Y.; Chen, Y. M.; Zhou, J.; Suo, Z. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces. 2013, 5, 10418-10422.
doi: 10.1021/am403966x URL |
9. |
Jiang, L.; Liu, C.; Mayumi, K.; Kato, K.; Yokoyama, H.; Ito, K. Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem Mater. 2018, 30, 5013-5019.
doi: 10.1021/acs.chemmater.8b01208 URL |
10. |
Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003, 15, 1155-1158.
doi: 10.1002/adma.200304907 URL |
11. |
Gong, J. P. Why are double network hydrogels so tough? Soft Matter. 2010, 6, 2583-2590.
doi: 10.1039/b924290b URL |
12. |
Sun, J. Y.; Zhao, X.; Illeperuma, W. R.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. Nature. 2012, 489, 133-136.
doi: 10.1038/nature11409 URL |
13. |
Dragan, E. S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014, 243, 572-590.
doi: 10.1016/j.cej.2014.01.065 URL |
14. |
Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of double network hydrogels. J Mater Chem B. 2015, 3, 3654-3676.
doi: 10.1039/C5TB00123D URL |
15. |
Xiang, J.; Ho, C. L.; Wong, W. Y. Metallopolymers for energy production, storage and conservation. Polym Chem. 2015, 6, 6905-6930.
doi: 10.1039/C5PY00941C URL |
16. |
Hailes, R. L.; Oliver, A. M.; Gwyther, J.; Whittell, G. R.; Manners, I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem Soc Rev. 2016, 45, 5358-5407.
doi: 10.1039/C6CS00155F URL |
17. |
Yan, J.; Zheng, X.; Yao, J.; Xu, P.; Miao, Z.; Li, J.; Lv, Z.; Zhang, Q.; Yan, Y. Metallopolymers from organically modified polyoxometalates (MOMPs): A review. J Organomet Chem. 2019, 884, 1-16.
doi: 10.1016/j.jorganchem.2019.01.012 URL |
18. |
Wang, Y.; Astruc, D.; Abd-El-Aziz, A. S. Metallopolymers for advanced sustainable applications. Chem Soc Rev. 2019, 48, 558-636.
doi: 10.1039/C7CS00656J URL |
19. |
Zhu, T.; Sha, Y.; Yan, J.; Pageni, P.; Rahman, M. A.; Yan, Y.; Tang, C. Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials. Nat Commun. 2018, 9, 4329.
doi: 10.1038/s41467-018-06475-9 URL |
20. |
Zhu, T.; Zhang, J.; Tang, C. Metallo-polyelectrolytes: correlating macromolecular architectures with properties and applications. Trends Chem. 2020, 2, 227-240.
doi: 10.1016/j.trechm.2019.12.004 URL |
21. |
Götz, S.; Zechel, S.; Hager, M. D.; Newkome, G. R.; Schubert, U. S. Versatile applications of metallopolymers. Prog Polym Sci. 2021, 119, 101428.
doi: 10.1016/j.progpolymsci.2021.101428 URL |
22. |
Zhao, L.; Liu, X.; Zhang, L.; Qiu, G.; Astruc, D.; Gu, H. Metallomacromolecules containing cobalt sandwich complexes: Synthesis and functional materials properties. Coord Chem Rev. 2017, 337, 34-79.
doi: 10.1016/j.ccr.2017.02.009 URL |
23. |
Zhu, T.; Tang, C. Crosslinked metallo-polyelectrolytes with enhanced flexibility and dimensional stability for anion-exchange membranes. Polym Chem. 2020, 11, 4542-4546.
doi: 10.1039/D0PY00757A URL |
24. |
Zhang, J.; Chen, Y. P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J Am Chem Soc. 2014, 136, 4873-4876.
doi: 10.1021/ja5011338 URL |
25. |
Mayer, U. F.; Gilroy, J. B.; O’Hare, D.; Manners, I. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes. J Am Chem Soc. 2009, 131, 10382-10383.
doi: 10.1021/ja903513e URL |
26. |
Zhang, J.; Yan, Y.; Chance, M. W.; Chen, J.; Hayat, J.; Ma, S.; Tang, C. Charged metallopolymers as universal precursors for versatile cobalt materials. Angew Chem Int Ed Engl. 2013, 52, 13387-13391.
doi: 10.1002/anie.201306432 URL |
27. |
Zhu, T.; Sha, Y.; Firouzjaie, H. A.; Peng, X.; Cha, Y.; Dissanayake, D.; Smith, M. D.; Vannucci, A. K.; Mustain, W. E.; Tang, C. Rational synthesis of metallo-cations toward redox- and alkaline-stable metallo-polyelectrolytes. J Am Chem Soc. 2020, 142, 1083-1089.
doi: 10.1021/jacs.9b12051 URL |
28. |
Musgrave, R. A.; Choi, P.; Harniman, R. L.; Richardson, R. M.; Shen, C.; Whittell, G. R.; Crassous, J.; Qiu, H.; Manners, I. Chiral transmission to cationic polycobaltocenes over multiple length scales using anionic surfactants. J Am Chem Soc. 2018, 140, 7222-7231.
doi: 10.1021/jacs.8b03112 URL |
29. |
Cha, Y.; Zhu, T.; Sha, Y.; Lin, H.; Hwang, J.; Seraydarian, M.; Craig, S. L.; Tang, C. Mechanochemistry of cationic cobaltocenium mechanophore. J Am Chem Soc. 2021, 143, 11871-11878.
doi: 10.1021/jacs.1c05233 URL |
30. |
Yang, P.; Bam, M.; Pageni, P.; Zhu, T.; Chen, Y. P.; Nagarkatti, M.; Decho, A. W.; Tang, C. Trio act of boronolectin with antibiotic-metal complexed macromolecules toward broad-spectrum antimicrobial efficacy. ACS Infect Dis. 2017, 3, 845-853.
doi: 10.1021/acsinfecdis.7b00132 URL |
31. |
Yang, P.; Luo, Y.; Kurnaz, L. B.; Bam, M.; Yang, X.; Decho, A. W.; Nagarkatti, M.; Tang, C. Biodegradable polycaprolactone metallopolymer-antibiotic bioconjugates containing phenylboronic acid and cobaltocenium for antimicrobial application. Biomater Sci. 2021, 9, 7237-7246.
doi: 10.1039/D1BM00970B URL |
32. |
Zhang, J.; Yan, J.; Pageni, P.; Yan, Y.; Wirth, A.; Chen, Y. P.; Qiao, Y.; Wang, Q.; Decho, A. W.; Tang, C. Anion-responsive metallopolymer hydrogels for healthcare applications. Sci Rep. 2015, 5, 11914.
doi: 10.1038/srep11914 URL |
33. |
Hwang, J.; Cha, Y.; Ramos, L.; Zhu, T.; Buzoglu Kurnaz, L.; Tang, C. Tough antibacterial metallopolymer double-network hydrogels via dual polymerization. Chem Mater. 2022. doi: 10.1021/acs.chemmater.2c00996.
doi: 10.1021/acs.chemmater.2c00996 URL |
34. |
Morisaku, T.; Watanabe, J.; Konno, T.; Takai, M.; Ishihara, K. Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer. 2008, 49, 4652-4657.
doi: 10.1016/j.polymer.2008.08.025 URL |
35. |
Ping, Z. H.; Nguyen, Q. T.; Chen, S. M.; Zhou, J. Q.; Ding, Y. D. States of water in different hydrophilic polymers — DSC and FTIR studies. Polymer. 2001, 42, 8461-8467.
doi: 10.1016/S0032-3861(01)00358-5 URL |
36. |
Zhao, C.; Li, X.; Li, L.; Cheng, G.; Gong, X.; Zheng, J. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir. 2013, 29, 1517-1524.
doi: 10.1021/la304511s URL |
37. | Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675. |
38. | Sanders, E. R. Aseptic laboratory techniques: plating methods. J Vis Exp. 2012, e3064. |
39. |
Ganewatta, M. S.; Miller, K. P.; Singleton, S. P.; Mehrpouya-Bahrami, P.; Chen, Y. P.; Yan, Y.; Nagarkatti, M.; Nagarkatti, P.; Decho, A. W.; Tang, C. Antibacterial and biofilm-disrupting coatings from resin acid-derived materials. Biomacromolecules. 2015, 16, 3336-3344.
doi: 10.1021/acs.biomac.5b01005 URL |
40. |
Voo, Z. X.; Khan, M.; Narayanan, K.; Seah, D.; Hedrick, J. L.; Yang, Y. Y. Antimicrobial/antifouling polycarbonate coatings: role of block copolymer architecture. Macromolecules. 2015, 48, 1055-1064.
doi: 10.1021/ma5022488 URL |
41. |
Yan, Y.; Pageni, P.; Kabir, M. P.; Tang, C. Metallocenium chemistry and its emerging impact on synthetic macromolecular chemistry. Synlett. 2016, 27, 984-1005.
doi: 10.1055/s-0035-1561504 URL |
42. |
Gong, J. P. Materials science. Materials both tough and soft. Science. 2014, 344, 161-162.
doi: 10.1126/science.1252389 URL |
43. |
Yin, H.; Akasaki, T.; Lin Sun, T.; Nakajima, T.; Kurokawa, T.; Nonoyama, T.; Taira, T.; Saruwatari, Y.; Ping Gong, J. Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B. 2013, 1, 3685-3693.
doi: 10.1039/c3tb20324g URL |
44. |
Lord, M. S.; Stenzel, M. H.; Simmons, A.; Milthorpe, B. K. The effect of charged groups on protein interactions with poly(HEMA) hydrogels. Biomaterials. 2006, 27, 567-575.
doi: 10.1016/j.biomaterials.2005.06.010 URL |
45. |
Brahim, S.; Narinesingh, D.; Guiseppi-Elie, A. Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules. 2003, 4, 497-503.
doi: 10.1021/bm020080u URL |
46. |
Lowe, S.; O’Brien-Simpson, N. M.; Connal, L. A. Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym Chem. 2015, 6, 198-212.
doi: 10.1039/C4PY01356E URL |
47. |
Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem Rev. 2010, 110, 2448-2471.
doi: 10.1021/cr800208y URL |
48. |
Ba, C.; Ladner, D. A.; Economy, J. Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. J Membr Sci. 2010, 347, 250-259.
doi: 10.1016/j.memsci.2009.10.031 URL |
49. |
Nederberg, F.; Zhang, Y.; Tan, J. P.; Xu, K.; Wang, H.; Yang, C.; Gao, S.; Guo, X. D.; Fukushima, K.; Li, L.; Hedrick, J. L.; Yang, Y. Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011, 3, 409-414.
doi: 10.1038/nchem.1012 URL |
50. |
Krishnan, S.; Weinman, C. J.; Ober, C. K. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 2008, 18, 3405-3413.
doi: 10.1039/b801491d URL |
51. |
Xu, Y.; Takai, M.; Ishihara, K. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials. 2009, 30, 4930-4938.
doi: 10.1016/j.biomaterials.2009.06.005 URL |
52. |
Ganewatta, M. S.; Chen, Y. P.; Wang, J.; Zhou, J.; Ebalunode, J.; Nagarkatti, M.; Decho, A. W.; Tang, C. Bio-inspired resin acid-derived materials as anti-bacterial resistance agents with unexpected activities. Chem Sci. 2014, 5, 2011-2016.
doi: 10.1039/c4sc00034j URL |
53. |
Ding, X.; Duan, S.; Ding, X.; Liu, R.; Xu, F. J. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv Funct Mater. 2018, 28, 1802140.
doi: 10.1002/adfm.201802140 URL |
54. |
Ergene, C.; Yasuhara, K.; Palermo, E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym Chem. 2018, 9, 2407-2427.
doi: 10.1039/C8PY00012C URL |
55. |
Ghosh, S.; Mukherjee, S.; Patra, D.; Haldar, J. Polymeric biomaterials for prevention and therapeutic intervention of microbial infections. Biomacromolecules. 2022, 23, 592-608.
doi: 10.1021/acs.biomac.1c01528 URL |
56. |
Shi, Y.; Teng, P.; Sang, P.; She, F.; Wei, L.; Cai, J. γ-AApeptides: design, structure, and applications. Acc Chem Res. 2016, 49, 428-441.
doi: 10.1021/acs.accounts.5b00492 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||