Biomaterials Translational ›› 2023, Vol. 4 ›› Issue (1): 41-50.doi: 10.12336/biomatertransl.2023.01.006
• RESEARCH ARTICLE • Previous Articles Next Articles
Andrew Tai1,2#, Euphemie Landao-Bassonga1,2#, Ziming Chen1#, Minh Tran3, Brent Allan1,3,4, Rui Ruan1, Dax Calder3, Mithran Goonewardene3, Hien Ngo3, Ming Hao Zheng1,2,*()
Received:
2022-12-04
Revised:
2023-02-22
Accepted:
2023-03-02
Online:
2023-03-28
Published:
2023-03-28
Contact:
* Ming Hao Zheng, About author:
Ming Hao Zheng, minghao.zheng@uwa.edu.au.Tai, A.; Landao-Bassonga, E.; Chen, Z.; Tran, M.; Allan, B.; Ruan, R.; Calder, D.; Goonewardene, M. H.; Ngo, H.; Zheng, M. H. Systematic evaluation of three porcinederived collagen membranes for guided bone regeneration. Biomater Transl. 2023, 4(1), 41-50.
Figure 1. Scanning electron microscopy of porcine collagen membranes. (A, B) Smooth (A) and rough (B) sides of Striate+TM, Bio–Gide? and CreosTM Xenoprotect. The smooth side of the collagen membranes showed a more uniform, smooth, and organized structure than the rough side. Scale bars: 100 μm (upper row), 2 μm (middle row), 100 nm (lower row). Representative scanning electron microscopy images of both smooth and rough sides of membranes at 150k× were analysed by OrientationJ for the orientation of fibres. Striate+TM and CreosTM Xenoprotect showed more uniform fibre orientation than Bio–Gide? on smooth side, whereas all three membranes showed random fibre orientation on rough side. (C, D) Porosity of smooth (C) and rough (D) sides of collagen membranes. Data are presented as means ± SEM. **P < 0.01, ***P < 0.001 (one–way analysis of variance with Tukey’s post hoc multiple comparison). ns: no significance.
Figure 2. (A, B) Diameter (A) and D–periodicity (B) of collagen bundles in Striate+TM, Bio–Gide? and CreosTM Xenoprotect (CreosTM X.). Data are presented as means ± SEM. **P < 0.01, ***P < 0.001 (one–way analysis of variance with Tukey’s post hoc multiple comparison). ns: no significance.
Figure 3. Thickness of porcine collagen membranes measured by micro–computed tomography. (A) Iodine–stained Striate+TM, Bio–Gide? and CreosTM Xenoprotect (CreosTM X.) membranes were aligned in polypropylene tubes and scanned by micro–computed tomography. (B) Cross sections of Striate+TM, Bio–Gide? and CreosTM Xenoprotect membranes were extracted by AVIZO software. (C) Thickness of three samples of each membrane. Data are presented as means ± SEM. At least 11 measurements were done on each membrane. **P < 0.01, ***P < 0.001 (one–way analysis of variance with Tukey’s post hoc multiple comparison). ns: no significance.
Figure 4. Barrier properties of three porcine collagen membranes measured by gravity–based filtration. (A) Representative results of collagen membranes’ barrier property by filtration with mixed standard beads in different sizes. (B, C) Quantitative analysis of beads with all small (B, 220, 450, 880, and 1250 nm) and large (C, 2.0, 3.3, 5.2, 7.88, 10.1, and 16.4 μm) sizes passing through different collagen membranes. Data are presented as means ± SEM. **P < 0.01, ***P < 0.001 (one–way analysis of variance with Tukey’s post hoc multiple comparison). FP1: Whatman Filter paper Grade 1; FP5: Whatman Filter paper Grade 5; ns: no significance.
Figure 5. Heamatoxylin and eosin staining of different porcine collagen membranes. No heamatoxylin staining was found in all membranes. Scale bars: 50 μm. CreosTM X.: CreosTM Xenoprotect.
Figure 6. Anti–DNA immunostaining on different porcine collagen membranes. No DNA was found in all membranes by anti–DNA immunostaining. Positive control (Ctrl) indicates porcine aortic valve. Scale bar: 100 μm. CreosTM X.: CreosTM Xenoprotect; dsDNA: double stranded DNA.
Figure 7. Determination of DNA content in different collagen membranes by real–time polymerase chain reaction. Among the three collagen membranes, only Bio–Gide? membrane showed significant DNA signal content. Data plotted above red dot line indicates undetectable within 40 cycles. CreosTM X.: CreosTM Xenoprotect; Ct: cycle threshold.
Figure 8. α–gal expression in different collagen membranes. No α–gal signal was detected in CreosTM Xenoprotect, Striate+TM and Bio–Gide? by anti–α–gal immunostaining. Positive control (Ctrl) indicates porcine aortic valve. Scale bar: 100 μm. α–gal: alpha–gal, galactose–α–1,3–galactose; CreosTM X.: CreosTM Xenoprotect.
Additional Figure 1. Determination of barrier property of collagen membranes by gravity–based filtration. (A) Striate+TM, Bio–Gide? and CreosTM Xenoprotect membranes were trimmed to 3 cm × 3 cm. (B) STL drawing for three–dimensional printed funnels. (C) Trimmed membranes were folded as filter funnel into the three–dimensional printed funnel, which was fitted at the top of the 15 mL tube. (D) Beads with different sizes (0.2, 0.45, 0.88, 1.25, 2, 3.3, 5.2, 7.88, 10.1, 16.4 μm) were mixed in 1:20–1:50 and slowly added to Striate+TM, Bio–Gide?, CreosTM Xenoprotect, Whatman Filter paper Grade 1 and Whatman Filter paper Grade 5. Filtrates were collected and analysed by flow cytometry. FACS: fluorescence activated cell sorting.
1 |
Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988, 81, 672-676.
doi: 10.1097/00006534-198805000-00004 URL |
2 | Sasaki, J. I.; Abe, G. L.; Li, A.; Thongthai, P.; Tsuboi, R.; Kohno, T.; Imazato, S. Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent. 2021, 8, 54-63. |
3 |
Sbricoli, L.; Guazzo, R.; Annunziata, M.; Gobbato, L.; Bressan, E.; Nastri, L. Selection of collagen membranes for bone regeneration: a literature review. Materials (Basel). 2020, 13, 786.
doi: 10.3390/ma13030786 URL |
4 |
Lee, S. W.; Kim, S. G. Membranes for the guided bone regeneration. Maxillofac Plast Reconstr Surg. 2014, 36, 239-246.
doi: 10.14402/jkamprs.2014.36.6.239 URL |
5 |
Kadler, K. E.; Holmes, D. F.; Trotter, J. A.; Chapman, J. A. Collagen fibril formation. Biochem J. 1996, 316 (Pt 1), 1-11.
doi: 10.1042/bj3160001 URL |
6 |
Pace, J. M.; Corrado, M.; Missero, C.; Byers, P. H. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol. 2003, 22, 3-14.
doi: 10.1016/S0945-053X(03)00007-6 URL |
7 |
Boot-Handford, R. P.; Tuckwell, D. S.; Plumb, D. A.; Rock, C. F.; Poulsom, R. A novel and highly conserved collagen (pro(alpha)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J Biol Chem. 2003, 278, 31067-31077.
doi: 10.1074/jbc.M212889200 URL |
8 |
Exposito, J. Y.; Valcourt, U.; Cluzel, C.; Lethias, C. The fibrillar collagen family. Int J Mol Sci. 2010, 11, 407-426.
doi: 10.3390/ijms11020407 URL |
9 | Hodge, A. J.; Petruska, J. A. Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure, Ramachandran, G. N., Ed. Academic Press: New York, 1963; pp 289-300. |
10 |
Chapman, J. A.; Tzaphlidou, M.; Meek, K. M.; Kadler, K. E. The collagen fibril--a model system for studying the staining and fixation of a protein. Electron Microsc Rev. 1990, 3, 143-182.
doi: 10.1016/0892-0354(90)90018-N URL |
11 |
Orgel, J. P.; Irving, T. C.; Miller, A.; Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A. 2006, 103, 9001-9005.
doi: 10.1073/pnas.0502718103 URL |
12 |
Wallace, J. M.; Chen, Q.; Fang, M.; Erickson, B.; Orr, B. G.; Banaszak Holl, M. M. Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir. 2010, 26, 7349-7354.
doi: 10.1021/la100006a URL |
13 |
Kemp, A. D.; Harding, C. C.; Cabral, W. A.; Marini, J. C.; Wallace, J. M. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol. 2012, 180, 428-438.
doi: 10.1016/j.jsb.2012.09.012 URL |
14 |
Wells, H. C.; Sizeland, K. H.; Kelly, S. J. R.; Kirby, N.; Hawley, A.; Mudie, S.; Haverkamp, R. G. Collagen fibril intermolecular spacing changes with 2-propanol: a mechanism for tissue stiffness. ACS Biomater Sci Eng. 2017, 3, 2524-2532.
doi: 10.1021/acsbiomaterials.7b00418 URL |
15 |
Watanabe-Nakayama, T.; Itami, M.; Kodera, N.; Ando, T.; Konno, H. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Sci Rep. 2016, 6, 28975.
doi: 10.1038/srep28975 |
16 |
Uitto, V. J.; Suomalainen, K.; Sorsa, T. Salivary collagenase. Origin, characteristics and relationship to periodontal health. J Periodontal Res. 1990, 25, 135-142.
doi: 10.1111/jre.1990.25.issue-3 URL |
17 |
Hilger, C.; Fischer, J.; Wölbing, F.; Biedermann, T. Role and mechanism of galactose-alpha-1,3-galactose in the elicitation of delayed anaphylactic reactions to red meat. Curr Allergy Asthma Rep. 2019, 19, 3.
doi: 10.1007/s11882-019-0835-9 |
18 | Zheng, M. H.; Chen, J.; Kirilak, Y.; Willers, C.; Xu, J.; Wood, D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005, 73, 61-67. |
19 | Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675. |
20 |
Rezakhaniha, R.; Agianniotis, A.; Schrauwen, J. T.; Griffa, A.; Sage, D.; Bouten, C. V.; van de Vosse, F. N.; Unser, M.; Stergiopulos, N. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 2012, 11, 461-473.
doi: 10.1007/s10237-011-0325-z URL |
21 |
Yoshida, T.; Nomura, T.; Shinoda, N.; Kusama, T.; Kadowaki, K.; Sugiura, K. Development of PCR primers for the detection of porcine DNA in feed using mtATP6 as the target sequence. Shokuhin Eiseigaku Zasshi. 2009, 50, 89-92.
doi: 10.3358/shokueishi.50.89 URL |
22 | Zitzmann, N. U.; Naef, R.; Schärer, P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997, 12, 844-852. |
23 |
Jiménez Garcia, J.; Berghezan, S.; Caramês, J. M. M.; Dard, M. M.; Marques, D. N. S. Effect of cross-linked vs non-cross-linked collagen membranes on bone: A systematic review. J Periodontal Res. 2017, 52, 955-964.
doi: 10.1111/jre.2017.52.issue-6 URL |
24 |
Becker, J.; Al-Nawas, B.; Klein, M. O.; Schliephake, H.; Terheyden, H.; Schwarz, F. Use of a new cross-linked collagen membrane for the treatment of dehiscence-type defects at titanium implants: a prospective, randomized-controlled double-blinded clinical multicenter study. Clin Oral Implants Res. 2009, 20, 742-749.
doi: 10.1111/clr.2009.20.issue-7 URL |
25 |
Zhu, M.; Duan, B.; Hou, K.; Mao, L.; Wang, X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J Biomed Mater Res B Appl Biomater. 2023, 111, 568-578.
doi: 10.1002/jbm.b.v111.3 URL |
26 |
Chen, P.; Wang, A.; Haynes, W.; Landao-Bassonga, E.; Lee, C.; Ruan, R.; Breidahl, W.; Shiroud Heidari, B.; Mitchell, C. A.; Zheng, M. A bio-inductive collagen scaffold that supports human primary tendon-derived cell growth for rotator cuff repair. J Orthop Translat. 2021, 31, 91-101.
doi: 10.1016/j.jot.2021.10.006 URL |
27 |
Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017, 125, 315-337.
doi: 10.1111/eos.2017.125.issue-5 URL |
28 |
Panahipour, L.; Kargarpour, Z.; Luza, B.; Lee, J. S.; Gruber, R. TGF-β activity related to the use of collagen membranes: in vitro bioassays. Int J Mol Sci. 2020, 21, 6636.
doi: 10.3390/ijms21186636 URL |
29 |
Kuravi, K. V.; Sorrells, L. T.; Nellis, J. R.; Rahman, F.; Walters, A. H.; Matheny, R. G.; Choudhary, S. K.; Ayares, D. L.; Commins, S. P.; Bianchi, J. R.; Turek, J. W. Allergic response to medical products in patients with alpha-gal syndrome. J Thorac Cardiovasc Surg. 2022, 164, e411-e424.
doi: 10.1016/j.jtcvs.2021.03.100 URL |
30 |
Steinke, J. W.; Platts-Mills, T. A.; Commins, S. P. The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol. 2015, 135, 589-596; quiz 597.
doi: 10.1016/j.jaci.2014.12.1947 URL |
[1] | Fujian Zhao, Zhen Yang, Lu Liu, Dafu Chen, Longquan Shao, Xiaofeng Chen. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass [J]. Biomaterials Translational, 2020, 1(1): 82-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||