Biomaterials Translational ›› 2021, Vol. 2 ›› Issue (4): 301-306.doi: 10.12336/biomatertransl.2021.04.005
• REVIEW • Previous Articles Next Articles
Trivia P. Frazier1,*(), Katie Hamel1, Xiying Wu1, Emma Rogers1, Haley Lassiter1, Jordan Robinson1, Omair Mohiuddin2, Michael Henderson1, Jeffrey M. Gimble1
Received:
2021-11-05
Revised:
2021-12-15
Accepted:
2021-12-20
Online:
2021-12-28
Published:
2021-12-28
Contact:
Trivia P. Frazier
E-mail:trivia.frazier@obatalasciences.com
About author:
Trivia Frazier, trivia.frazier@obatalasciences.com.Frazier, T.; Hamel, K.; Wu, X.; Rogers, E.; Lassiter, H.; Robinson, J.; Mohiuddin, O.; Henderson, M.; Gimble, J. Adipose-derived cells: building blocks of three-dimensional microphysiological systems. Biomater Transl. 2021, 2(4), 301-306.
Adipose-derived stromal/stem cells | Stromal vascular cells | |
---|---|---|
Shared features | · Isolated by enzyme digestion and centrifugation | |
· Multilineage differentiation potential (adipogenic, chondrogenic, osteogenic) | ||
Distinguishing features | Culture adherent & expanded | Not exposed to plastic or expanded |
Depleted of Hematopoietic Lineages (CD45-) | Contains endothelial progenitors, fibroblasts, pericytes, lymphoid and myeloid cells (CD45+) | |
Higher colony forming unit - fibroblast frequency (> 5%) | Lower colony forming unit - fibroblast frequency (1%) |
Table 1 Features of adipose-derived stromal/stem cells & stromal vascular cells.
Adipose-derived stromal/stem cells | Stromal vascular cells | |
---|---|---|
Shared features | · Isolated by enzyme digestion and centrifugation | |
· Multilineage differentiation potential (adipogenic, chondrogenic, osteogenic) | ||
Distinguishing features | Culture adherent & expanded | Not exposed to plastic or expanded |
Depleted of Hematopoietic Lineages (CD45-) | Contains endothelial progenitors, fibroblasts, pericytes, lymphoid and myeloid cells (CD45+) | |
Higher colony forming unit - fibroblast frequency (> 5%) | Lower colony forming unit - fibroblast frequency (1%) |
1. |
Langer, R.; Vacanti, J. P. Tissue engineering. Science. 1993, 260, 920-926.
doi: 10.1126/science.8493529 URL |
2. |
Prestwich, G. D. Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: a pragmatic approach. J Cell Biochem. 2007, 101, 1370-1383.
doi: 10.1002/(ISSN)1097-4644 URL |
3. |
Prestwich, G. D. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc Chem Res. 2008, 41, 139-148.
doi: 10.1021/ar7000827 URL |
4. |
Prestwich, G. D.; Liu, Y.; Yu, B.; Shu, X. Z.; Scott, A. 3-D culture in synthetic extracellular matrices: new tissue models for drug toxicology and cancer drug discovery. Adv Enzyme Regul. 2007, 47, 196-207.
doi: 10.1016/j.advenzreg.2006.12.012 URL |
5. |
Sutherland, M. L.; Fabre, K. M.; Tagle, D. A. The National Institutes of Health Microphysiological Systems Program focuses on a critical challenge in the drug discovery pipeline. Stem Cell Res Ther. 2013, 4 Suppl 1, I1.
doi: 10.1186/scrt361 URL |
6. | Marx, U.; Akabane, T.; Andersson, T. B.; Baker, E.; Beilmann, M.; Beken, S.; Brendler-Schwaab, S.; Cirit, M.; David, R.; Dehne, E. M.; Durieux, I.; Ewart, L.; Fitzpatrick, S. C.; Frey, O.; Fuchs, F.; Griffith, L. G.; Hamilton, G. A.; Hartung, T.; Hoeng, J.; Hogberg, H.; Hughes, D. J.; Ingber, D. E.; Iskandar, A.; Kanamori, T.; Kojima, H.; Kuehnl, J.; Leist, M.; Li, B.; Loskill, P.; Mendrick, D. L.; Neumann, T.; Pallocca, G.; Rusyn, I.; Smirnova, L.; Steger-Hartmann, T.; Tagle, D. A.; Tonevitsky, A.; Tsyb, S.; Trapecar, M.; Van de Water, B.; Van den Eijnden-van Raaij, J.; Vulto, P.; Watanabe, K.; Wolf, A.; Zhou, X.; Roth, A. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. Altex. 2020, 37, 365-394. |
7. |
Watson, D. E.; Hunziker, R.; Wikswo, J. P. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood). 2017, 242, 1559-1572.
doi: 10.1177/1535370217732765 URL |
8. |
Thomas, E. D., Sr. Stem cell transplantation: past, present and future. Stem Cells. 1994, 12, 539-544.
doi: 10.1002/stem.v12:6 URL |
9. |
Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001, 7, 211-228.
doi: 10.1089/107632701300062859 URL |
10. |
Bourin, P.; Bunnell, B. A.; Casteilla, L.; Dominici, M.; Katz, A. J.; March, K. L.; Redl, H.; Rubin, J. P.; Yoshimura, K.; Gimble, J. M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013, 15, 641-648.
doi: 10.1016/j.jcyt.2013.02.006 URL |
11. |
DeLany, J. P.; Floyd, Z. E.; Zvonic, S.; Smith, A.; Gravois, A.; Reiners, E.; Wu, X.; Kilroy, G.; Lefevre, M.; Gimble, J. M. Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by Adipogenesis. Mol Cell Proteomics. 2005, 4, 731-740.
doi: 10.1074/mcp.M400198-MCP200 URL |
12. |
Zvonic, S.; Lefevre, M.; Kilroy, G.; Floyd, Z. E.; DeLany, J. P.; Kheterpal, I.; Gravois, A.; Dow, R.; White, A.; Wu, X.; Gimble, J. M. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics. 2007, 6, 18-28.
doi: 10.1074/mcp.M600217-MCP200 URL |
13. |
Kheterpal, I.; Ku, G.; Coleman, L.; Yu, G.; Ptitsyn, A. A.; Floyd, Z. E.; Gimble, J. M. Proteome of human subcutaneous adipose tissue stromal vascular fraction cells versus mature adipocytes based on DIGE. J Proteome Res. 2011, 10, 1519-1527.
doi: 10.1021/pr100887r URL |
14. |
Martin, E. C.; Qureshi, A. T.; Dasa, V.; Freitas, M. A.; Gimble, J. M.; Davis, T. A. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: perspectives on miRNA biogenesis and cellular transcriptome. Biochimie. 2016, 124, 98-111.
doi: 10.1016/j.biochi.2015.02.012 URL |
15. | Hicok, K. C.; Hedrick, M. H. Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol. 2011, 702, 87-105. |
16. |
Williams, S. K.; Kosnik, P. E.; Kleinert, L. B.; Vossman, E. M.; Lye, K. D.; Shine, M. H. Adipose stromal vascular fraction cells isolated using an automated point of care system improve the patency of expanded polytetrafluoroethylene vascular grafts. Tissue Eng Part A. 2013, 19, 1295-1302.
doi: 10.1089/ten.tea.2012.0318 URL |
17. |
Williams, S. K.; Morris, M. E.; Kosnik, P. E.; Lye, K. D.; Gentzkow, G. D.; Ross, C. B.; Dwevidi, A. J.; Kleinert, L. B. Point-of-care adipose-derived stromal vascular fraction cell isolation and expanded polytetrafluoroethylene graft sodding. Tissue Eng Part C Methods. 2017, 23, 497-504.
doi: 10.1089/ten.tec.2017.0105 URL |
18. |
Brown, J. C.; Shang, H.; Li, Y.; Yang, N.; Patel, N.; Katz, A. J. Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: cell characterization and review of the literature. Tissue Eng Part C Methods. 2017, 23, 125-135.
doi: 10.1089/ten.tec.2016.0377 URL |
19. |
Doi, K.; Tanaka, S.; Iida, H.; Eto, H.; Kato, H.; Aoi, N.; Kuno, S.; Hirohi, T.; Yoshimura, K. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med. 2013, 7, 864-870.
doi: 10.1002/term.v7.11 URL |
20. |
Güven, S.; Karagianni, M.; Schwalbe, M.; Schreiner, S.; Farhadi, J.; Bula, S.; Bieback, K.; Martin, I.; Scherberich, A. Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology. Tissue Eng Part C Methods. 2012, 18, 575-582.
doi: 10.1089/ten.tec.2011.0617 URL |
21. | SundarRaj, S.; Deshmukh, A.; Priya, N.; Krishnan, V. S.; Cherat, M.; Majumdar, A. S. Development of a system and method for automated isolation of stromal vascular fraction from adipose tissue lipoaspirate. Stem Cells Int. 2015, 2015, 109353. |
22. |
Hanke, A.; Prantl, L.; Wenzel, C.; Nerlich, M.; Brockhoff, G.; Loibl, M.; Gehmert, S. Semi-automated extraction and characterization of stromal vascular fraction using a new medical device. Clin Hemorheol Microcirc. 2016, 64, 403-412.
doi: 10.3233/CH-168124 URL |
23. | Bender, R.; McCarthy, M.; Brown, T.; Bukowska, J.; Smith, S.; Abbott, R. D.; Kaplan, D. L.; Williams, C.; Wade, J. W.; Alarcon, A.; Wu, X.; Lau, F.; Gimble, J. M.; Frazier, T. Human adipose derived cells in two- and three-dimensional cultures: functional validation of an in vitro fat construct. Stem Cells Int. 2020, 2020, 4242130. |
24. |
Pope, B. D.; Warren, C. R.; Dahl, M. O.; Pizza, C. V.; Henze, D. E.; Sinatra, N. R.; Gonzalez, G. M.; Chang, H.; Liu, Q.; Glieberman, A. L.; Ferrier, J. P., Jr.; Cowan, C. A.; Parker, K. K. Fattening chips: hypertrophy, feeding, and fasting of human white adipocytes in vitro. Lab Chip. 2020, 20, 4152-4165.
doi: 10.1039/D0LC00508H URL |
25. |
Abbott, R. D.; Raja, W. K.; Wang, R. Y.; Stinson, J. A.; Glettig, D. L.; Burke, K. A.; Kaplan, D. L. Long term perfusion system supporting adipogenesis. Methods. 2015, 84, 84-89.
doi: 10.1016/j.ymeth.2015.03.022 URL |
26. |
Abbott, R. D.; Borowsky, F. E.; Quinn, K. P.; Bernstein, D. L.; Georgakoudi, I.; Kaplan, D. L. Non-invasive assessments of adipose tissue metabolism in vitro. Ann Biomed Eng. 2016, 44, 725-732.
doi: 10.1007/s10439-015-1438-9 URL |
27. |
Choi, J. H.; Bellas, E.; Gimble, J. M.; Vunjak-Novakovic, G.; Kaplan, D. L. Lipolytic function of adipocyte/endothelial cocultures. Tissue Eng Part A. 2011, 17, 1437-1444.
doi: 10.1089/ten.tea.2010.0527 URL |
28. |
Choi, J. H.; Gimble, J. M.; Lee, K.; Marra, K. G.; Rubin, J. P.; Yoo, J. J.; Vunjak-Novakovic, G.; Kaplan, D. L. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev. 2010, 16, 413-426.
doi: 10.1089/ten.teb.2009.0544 URL |
29. |
Wang, R. Y.; Abbott, R. D.; Zieba, A.; Borowsky, F. E.; Kaplan, D. L. Development of a three-dimensional adipose tissue model for studying embryonic exposures to obesogenic chemicals. Ann Biomed Eng. 2017, 45, 1807-1818.
doi: 10.1007/s10439-016-1752-x URL |
30. |
Ward, A.; Quinn, K. P.; Bellas, E.; Georgakoudi, I.; Kaplan, D. L. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor. PLoS One. 2013, 8, e55696.
doi: 10.1371/journal.pone.0055696 URL |
31. |
Loskill, P.; Sezhian, T.; Tharp, K. M.; Lee-Montiel, F. T.; Jeeawoody, S.; Reese, W. M.; Zushin, P. H.; Stahl, A.; Healy, K. E. WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. Lab Chip. 2017, 17, 1645-1654.
doi: 10.1039/C6LC01590E URL |
32. |
Rogal, J.; Binder, C.; Kromidas, E.; Roosz, J.; Probst, C.; Schneider, S.; Schenke-Layland, K.; Loskill, P. WAT-on-a-chip integrating human mature white adipocytes for mechanistic research and pharmaceutical applications. Sci Rep. 2020, 10, 6666.
doi: 10.1038/s41598-020-63710-4 URL |
33. |
McCarthy, M.; Brown, T.; Alarcon, A.; Williams, C.; Wu, X.; Abbott, R. D.; Gimble, J.; Frazier, T. Fat-on-a-chip models for research and discovery in obesity and its metabolic comorbidities. Tissue Eng Part B Rev. 2020, 26, 586-595.
doi: 10.1089/ten.teb.2019.0261 URL |
34. |
Qi, L.; Zushin, P. H.; Chang, C. F.; Lee, Y. T.; Alba, D. L.; Koliwad, S. K.; Stahl, A. Probing insulin sensitivity with metabolically competent human stem cell-derived white adipose tissue microphysiological systems. Small. 2021. doi: 10.1002/smll.202103157.
doi: 10.1002/smll.202103157 URL |
35. |
Kostrzewski, T.; Snow, S.; Battle, A. L.; Peel, S.; Ahmad, Z.; Basak, J.; Surakala, M.; Bornot, A.; Lindgren, J.; Ryaboshapkina, M.; Clausen, M.; Lindén, D.; Maass, C.; Young, L. M.; Corrigan, A.; Ewart, L.; Hughes, D. Modelling human liver fibrosis in the context of non-alcoholic steatohepatitis using a microphysiological system. Commun Biol. 2021, 4, 1080.
doi: 10.1038/s42003-021-02616-x URL |
36. |
Strong, A. L.; Ohlstein, J. F.; Biagas, B. A.; Rhodes, L. V.; Pei, D. T.; Tucker, H. A.; Llamas, C.; Bowles, A. C.; Dutreil, M. F.; Zhang, S.; Gimble, J. M.; Burow, M. E.; Bunnell, B. A. Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 2015, 17, 112.
doi: 10.1186/s13058-015-0622-z URL |
37. | Strong, A. L.; Pei, D. T.; Hurst, C. G.; Gimble, J. M.; Burow, M. E.; Bunnell, B. A. Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype. Stem Cells Int. 2017, 2017, 9216502. |
38. |
Strong, A. L.; Semon, J. A.; Strong, T. A.; Santoke, T. T.; Zhang, S.; McFerrin, H. E.; Gimble, J. M.; Bunnell, B. A. Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells. 2012, 30, 2774-2783.
doi: 10.1002/stem.v30.12 URL |
39. |
Strong, A. L.; Strong, T. A.; Rhodes, L. V.; Semon, J. A.; Zhang, X.; Shi, Z.; Zhang, S.; Gimble, J. M.; Burow, M. E.; Bunnell, B. A. Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Res. 2013, 15, R102.
doi: 10.1186/bcr3569 URL |
40. |
Mohiuddin, O. A.; Campbell, B.; Poche, J. N.; Ma, M.; Rogers, E.; Gaupp, D.; Harrison, M. A. A.; Bunnell, B. A.; Hayes, D. J.; Gimble, J. M. Decellularized adipose tissue hydrogel promotes bone regeneration in critical-sized mouse femoral defect model. Front Bioeng Biotechnol. 2019, 7, 211.
doi: 10.3389/fbioe.2019.00211 URL |
41. | Mohiuddin, O. A.; O’Donnell, B. T.; Poche, J. N.; Iftikhar, R.; Wise, R. M.; Motherwell, J. M.; Campbell, B.; Savkovic, S. D.; Bunnell, B. A.; Hayes, D. J.; Gimble, J. M. Human adipose-derived hydrogel characterization based on in vitro ASC biocompatibility and differentiation. Stem Cells Int. 2019, 2019, 9276398. |
42. |
Bicer, M.; Sheard, J.; Iandolo, D.; Boateng, S. Y.; Cottrell, G. S.; Widera, D. Electrical stimulation of adipose-derived stem cells in 3D nanofibrillar cellulose increases their osteogenic potential. Biomolecules. 2020, 10, 1696.
doi: 10.3390/biom10121696 URL |
43. |
Manikowski, D.; Andrée, B.; Samper, E.; Saint-Marc, C.; Olmer, R.; Vogt, P.; Strauß, S.; Haverich, A.; Hilfiker, A. Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources. Vascul Pharmacol. 2018, 106, 28-36.
doi: 10.1016/j.vph.2018.02.003 URL |
44. |
Andrée, B.; Ichanti, H.; Kalies, S.; Heisterkamp, A.; Strauß, S.; Vogt, P. M.; Haverich, A.; Hilfiker, A. Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Sci Rep. 2019, 9, 5437.
doi: 10.1038/s41598-019-41985-6 URL |
45. |
Mertaniemi, H.; Escobedo-Lucea, C.; Sanz-Garcia, A.; Gandía, C.; Mäkitie, A.; Partanen, J.; Ikkala, O.; Yliperttula, M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials. 2016, 82, 208-220.
doi: 10.1016/j.biomaterials.2015.12.020 URL |
46. |
Krontiras, P.; Gatenholm, P.; Hägg, D. A. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res B Appl Biomater. 2015, 103, 195-203.
doi: 10.1002/jbm.b.v103.1 URL |
47. | Bhumiratana, S.; Bernhard, J. C.; Alfi, D. M.; Yeager, K.; Eton, R. E.; Bova, J.; Shah, F.; Gimble, J. M.; Lopez, M. J.; Eisig, S. B.; Vunjak-Novakovic, G. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016, 8, 343ra383. |
48. |
Chen, D.; Wu, J. Y.; Kennedy, K. M.; Yeager, K.; Bernhard, J. C.; Ng, J. J.; Zimmerman, B. K.; Robinson, S.; Durney, K. M.; Shaeffer, C.; Vila, O. F.; Takawira, C.; Gimble, J. M.; Guo, X. E.; Ateshian, G. A.; Lopez, M. J.; Eisig, S. B.; Vunjak-Novakovic, G. Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Sci Transl Med. 2020, 12, eabb6683.
doi: 10.1126/scitranslmed.abb6683 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||