Biomaterials Translational ›› 2021, Vol. 2 ›› Issue (4): 307-311.doi: 10.12336/biomatertransl.2021.04.006
• REVIEW • Previous Articles Next Articles
Received:
2021-08-18
Revised:
2021-10-19
Accepted:
2021-11-16
Online:
2021-12-28
Published:
2021-12-28
Contact:
Arnold I. Caplan
E-mail:arnold.caplan@case.edu
About author:
Arnold I. Caplan, arnold.caplan@case.edu.
Caplan, A. I. Mesenchymal stem cells and COVID-19: the process of discovery and of translation. Biomater Transl. 2021, 2(4), 307-311.
1. |
Caplan, A. I. Mesenchymal stem cells. J Orthop Res. 1991, 9, 641-650.
doi: 10.1002/(ISSN)1554-527X URL |
2. |
Guimarães-Camboa, N.; Cattaneo, P.; Sun, Y.; Moore-Morris, T.; Gu, Y.; Dalton, N. D.; Rockenstein, E.; Masliah, E.; Peterson, K. L.; Stallcup, W. B.; Chen, J.; Evans, S. M. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017, 20, 345-359.e5.
doi: 10.1016/j.stem.2016.12.006 URL |
3. |
Levy, O.; Kuai, R.; Siren, E. M. J.; Bhere, D.; Milton, Y.; Nissar, N.; De Biasio, M.; Heinelt, M.; Reeve, B.; Abdi, R.; Alturki, M.; Fallatah, M.; Almalik, A.; Alhasan, A. H.; Shah, K.; Karp, J. M. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020, 6, eaba6884.
doi: 10.1126/sciadv.aba6884 URL |
4. |
Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8, 315-317.
doi: 10.1080/14653240600855905 URL |
5. |
Caplan, A. I. What’s in a name? Tissue Eng Part A. 2010, 16, 2415-2417.
doi: 10.1089/ten.tea.2010.0216 URL |
6. |
Crisan, M.; Yap, S.; Casteilla, L.; Chen, C. W.; Corselli, M.; Park, T. S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L.; Norotte, C.; Teng, P. N.; Traas, J.; Schugar, R.; Deasy, B. M.; Badylak, S.; Buhring, H. J.; Giacobino, J. P.; Lazzari, L.; Huard, J.; Péault, B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008, 3, 301-313.
doi: 10.1016/j.stem.2008.07.003 URL |
7. |
Caplan, A. I. All MSCs are pericytes? Cell Stem Cell. 2008, 3, 229-230.
doi: 10.1016/j.stem.2008.08.008 URL |
8. |
Bernardo, M. E.; Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013, 13, 392-402.
doi: 10.1016/j.stem.2013.09.006 URL |
9. |
de Witte, S. F. H.; Luk, F.; Sierra Parraga, J. M.; Gargesha, M.; Merino, A.; Korevaar, S. S.; Shankar, A. S.; O’Flynn, L.; Elliman, S. J.; Roy, D.; Betjes, M. G. H.; Newsome, P. N.; Baan, C. C.; Hoogduijn, M. J. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018, 36, 602-615.
doi: 10.1002/stem.2779 URL |
10. |
Vasandan, A. B.; Jahnavi, S.; Shashank, C.; Prasad, P.; Kumar, A.; Prasanna, S. J. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE(2)-dependent mechanism. Sci Rep. 2016, 6, 38308.
doi: 10.1038/srep38308 URL |
11. |
Lin, P.; Correa, D.; Kean, T. J.; Awadallah, A.; Dennis, J. E.; Caplan, A. I. Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Mol Ther. 2014, 22, 160-168.
doi: 10.1038/mt.2013.221 URL |
12. |
Caplan, A. I.; Dennis, J. E. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98, 1076-1084.
doi: 10.1002/(ISSN)1097-4644 URL |
13. |
Guo, W.; Wang, H.; Zou, S.; Gu, M.; Watanabe, M.; Wei, F.; Dubner, R.; Huang, G. T.; Ren, K. Bone marrow stromal cells produce long-term pain relief in rat models of persistent pain. Stem Cells. 2011, 29, 1294-1303.
doi: 10.1002/stem.667 URL |
14. |
Bonfield, T. L.; Koloze, M.; Lennon, D. P.; Zuchowski, B.; Yang, S. E.; Caplan, A. I. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol. 2010, 299, L760-770.
doi: 10.1152/ajplung.00182.2009 URL |
15. |
Meirelles Lda, S.; Fontes, A. M.; Covas, D. T.; Caplan, A. I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009, 20, 419-427.
doi: 10.1016/j.cytogfr.2009.10.002 URL |
16. |
Krasnodembskaya, A.; Song, Y.; Fang, X.; Gupta, N.; Serikov, V.; Lee, J. W.; Matthay, M. A. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010, 28, 2229-2238.
doi: 10.1002/stem.v28.12 URL |
17. | Sutton, M. T.; Fletcher, D.; Ghosh, S. K.; Weinberg, A.; van Heeckeren, R.; Kaur, S.; Sadeghi, Z.; Hijaz, A.; Reese, J.; Lazarus, H. M.; Lennon, D. P.; Caplan, A. I.; Bonfield, T. L. Antimicrobial properties of mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int. 2016, 2016, 5303048. |
18. | Mascharak, S.; desJardins-Park, H. E.; Davitt, M. F.; Griffin, M.; Borrelli, M. R.; Moore, A. L.; Chen, K.; Duoto, B.; Chinta, M.; Foster, D. S.; Shen, A. H.; Januszyk, M.; Kwon, S. H.; Wernig, G.; Wan, D. C.; Lorenz, H. P.; Gurtner, G. C.; Longaker, M. T. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021, 372, eaba2374. |
19. |
Zhang, L.; Ghosh, S. K.; Basavarajappa, S. C.; Muller-Greven, J.; Penfield, J.; Brewer, A.; Ramakrishnan, P.; Buck, M.; Weinberg, A. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells. bioRxiv. 2021. doi: 10.1101/2021.01.07.425621.
doi: 10.1101/2021.01.07.425621 URL |
20. |
Wang, C.; Wang, S.; Li, D.; Chen, P.; Han, S.; Zhao, G.; Chen, Y.; Zhao, J.; Xiong, J.; Qiu, J.; Wei, D. Q.; Zhao, J.; Wang, J. Human cathelicidin inhibits SARS-CoV-2 infection: killing two birds with one stone. ACS infectious diseases. 2021, 7, 1545-1554.
doi: 10.1021/acsinfecdis.1c00096 URL |
21. |
Caplan, A. I. Cell-based therapies: the nonresponder. Stem Cells Transl Med. 2018, 7, 762-766.
doi: 10.1002/sctm.18-0074 URL |
22. |
Becker, A. J.; Mc, C. E.; Till, J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963, 197, 452-454.
doi: 10.1038/197452a0 URL |
23. |
Hosoda, T.; Zheng, H.; Cabral-da-Silva, M.; Sanada, F.; Ide-Iwata, N.; Ogórek, B.; Ferreira-Martins, J.; Arranto, C.; D’Amario, D.; del Monte, F.; Urbanek, K.; D’Alessandro, D. A.; Michler, R. E.; Anversa, P.; Rota, M.; Kajstura, J.; Leri, A. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation. 2011, 123, 1287-1296.
doi: 10.1161/CIRCULATIONAHA.110.982918 URL |
24. | Retraction of: Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism. Circulation. 2019, 139, e38. |
25. |
Singh, S.; Chakravarty, T.; Chen, P.; Akhmerov, A.; Falk, J.; Friedman, O.; Zaman, T.; Ebinger, J. E.; Gheorghiu, M.; Marbán, L.; Marbán, E.; Makkar, R. R. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res Cardiol. 2020, 115, 36.
doi: 10.1007/s00395-020-0795-1 URL |
26. | Caplan, A. I. Medicinal signalling cells: they work, so use them. Nature. 2019, 566, 39. |
27. |
Caplan, A. I. There is no “stem cell mess”. Tissue Eng Part B Rev. 2019, 25, 291-293.
doi: 10.1089/ten.teb.2019.0049 URL |
28. |
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L. W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K. J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R. C. Transplantation of ACE2(-) Mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020, 11, 216-228.
doi: 10.14336/AD.2020.0228 URL |
29. |
Lanzoni, G.; Linetsky, E.; Correa, D.; Messinger Cayetano, S.; Alvarez, R. A.; Kouroupis, D.; Alvarez Gil, A.; Poggioli, R.; Ruiz, P.; Marttos, A. C.; Hirani, K.; Bell, C. A.; Kusack, H.; Rafkin, L.; Baidal, D.; Pastewski, A.; Gawri, K.; Leñero, C.; Mantero, A. M. A.; Metalonis, S. W.; Wang, X.; Roque, L.; Masters, B.; Kenyon, N. S.; Ginzburg, E.; Xu, X.; Tan, J.; Caplan, A. I.; Glassberg, M. K.; Alejandro, R.; Ricordi, C. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021, 10, 660-673.
doi: 10.1002/sctm.20-0472 URL |
30. |
Kaushal, S.; Khan, A.; Deatrick, K.; Ng, D. K.; Snyder, A.; Shah, A.; Caceres, L. V.; Bacallao, K.; Bembea, M.; Everett, A.; Zhu, J.; Kaczorowski, D.; Madathil, R.; Tabatabai, A.; Rosenthal, G.; Brooks, A.; Longsomboon, B.; Mishra, R.; Saha, P.; Desire, Y.; Saltzman, R.; G. Hankey, K.; Arias, S. A.; Ayoade, F.; Tovar, J. A.; Lamazares, R.; Gershengorn, H. B.; Fontaine, M. J.; Klein, M.; Mullins, K.; Gunasekaran, M.; Loebe, M.; Karakeshishyan, V.; Jayaweera, D. T.; Atala, A.; Ghodsizad, A.; Hare, J. M. Intravenous mesenchymal stem cells in extracorporeal oxygenation patients with severe COVID-19 acute respiratory distress syndrome. medRxiv. 2020. doi: 10.1101/2020.10.15.20122523.
doi: 10.1101/2020.10.15.20122523 URL |
[1] | Hongtao Yang, Wenjiao Lin, Yufeng Zheng. Advances and perspective on the translational medicine of biodegradable metals [J]. Biomaterials Translational, 2021, 2(3): 177-187. |
[2] | Ying Luo, Jue Wang, Michael Tim Yun Ong, Patrick Shu-hang Yung, Jiali Wang, Ling Qin. Update on the research and development of magnesium-based biodegradable implants and their clinical translation in orthopaedics [J]. Biomaterials Translational, 2021, 2(3): 188-196. |
[3] | Jing Long, Bin Teng, Wei Zhang, Long Li, Ming Zhang, Yingqi Chen, Zhenyu Yao, Xiangbo Meng, Xinluan Wang, Ling Qin, Yuxiao Lai. Preclinical evaluation of acute systemic toxicity of magnesium incorporated poly(lactic-co-glycolic acid) porous scaffolds by three-dimensional printing [J]. Biomaterials Translational, 2021, 2(3): 272-284. |
[4] | Yizhong Peng, Xiangcheng Qing, Hongyang Shu, Shuo Tian, Wenbo Yang, Songfeng Chen, Hui Lin, Xiao Lv, Lei Zhao, Xi Chen, Feifei Pu, Donghua Huang, Xu Cao, Zengwu Shao. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration [J]. Biomaterials Translational, 2021, 2(2): 91-142. |
[5] | Ting Ge, Shengfeng Cheng. Physicochemical properties of respiratory droplets and their role in COVID-19 pandemics: a critical review [J]. Biomaterials Translational, 2021, 2(1): 10-18. |
[6] | Isak Jatoi, Jingyu Fan. A biomaterials viewpoint for the 2020 SARS-CoV-2 vaccine development [J]. Biomaterials Translational, 2021, 2(1): 30-42. |
[7] | Kaewta Rattanapisit, Gorawit Yusakul, Balamurugan Shanmugaraj, Kittinop Kittirotruji, Phassorn Suwatsrisakul, Eakachai Prompetchara, Suthira Taychakhoonavud, Waranyoo Phoolcharoen. Plant-produced recombinant SARS-CoV-2 receptor-binding domain; an economical, scalable biomaterial source for COVID-19 diagnosis [J]. Biomaterials Translational, 2021, 2(1): 43-49. |
[8] | Xing Yang, Yuanyuan Li, Xujie Liu, Wei He, Qianli Huang, Qingling Feng. Nanoparticles and their effects on differentiation of mesenchymal stem cells [J]. Biomaterials Translational, 2020, 1(1): 58-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||