Biomaterials Translational ›› 2022, Vol. 3 ›› Issue (2): 116-133.doi: 10.12336/biomatertransl.2022.02.001
• REVIEW • Previous Articles Next Articles
Changning Sun1,2, Jianfeng Kang3, Chuncheng Yang1, Jibao Zheng1,2, Yanwen Su1,2, Enchun Dong1,2, Yingjie Liu1,2, Siqi Yao1,2, Changquan Shi1, Huanhao Pang1,2, Jiankang He1,2, Ling Wang1,2,*(), Chaozong Liu4, Jianhua Peng5, Liang Liu5, Yong Jiang5, Dichen Li1,2,*(
)
Received:
2022-01-26
Revised:
2022-03-09
Accepted:
2022-06-08
Online:
2022-06-28
Published:
2022-06-28
Contact:
Ling Wang,Dichen Li
E-mail:menlwang@mail.xjtu.edu.cn;dcli@mail.xjtu.edu.cn
About author:
Dichen Li, dcli@mail.xjtu.edu.cn.Figure 4. 3D-printed PEEK cranioplasty patch. (A) CT image. (B) 3D model of the defected skull. (C) 3D model of cranioplasty patch (yellow). (D) Cranioplasty patch (red) within CT image. (E) 3D-printed PEEK cranioplasty patch. (F) Intraoperative photograph. 3D: three-dimensional; CT: computed tomography; PEEK: polyether-ether-ketone.
Figure 5. Design and application of an implant for paranasal augmentation. (A) Pre-operative design of the implant. (B) A 3D-printed porous PEEK/BaSiO4 implant. (C) Intraoperative view of a paranasal implant fixed with screws. (D, E) Pre-operative (D) and 3-month post-operative (E) comparison through CT models. 3D: three-dimensional; CT: computed tomography; PEEK: polyether-ether-ketone.
Figure 6. 3D-printed PEEK implant for mandibular defect repair. (A) CT image. (B) 3D model with tumour (blue). (C) 3D model of the mandible. Dotted outline indicates the location of the tumour. (D) Pre-operative planning for fibula graft and (E) implantation. (F) FEA results of PEEK implant and Ti plate. (G) 3D printed PEEK mandibular prosthesis. (H) Intraoperative photograph. 3D: three-dimensional; CT: computed tomography; FEA: finite element analysis; PEEK: polyether-ether-ketone; Ti: titanium.
Figure 7. 3D-printed PEEK implant for chest wall reconstruction. (A) CT image. (B) 3D model with tumour (blue). (C) 3D model of the thoracic cavity and rib prosthesis (yellow). (D) 3D printed rib prosthesis. (E) FEA results. (F) Results of mechanical testing. (G) Intraoperative photograph. (H, I) Design (H) and implantation (I) of the costal arch prosthesis. (J, K) Design (J) and implantation (K) of the sternum prosthesis. The yellow indicates the implant, and the blue indicates the tumour. 3D: three-dimensional; CT: computed tomography; FEA: finite element analysis; PEEK: polyether-ether-ketone.
Figure 8. 3D-printed PEEK scapula prosthesis. (A) Design. (B) Strength evaluation. (C) Photograph of scapula prosthesis. (D) Intraoperative photograph. 3D: three-dimensional; PEEK: polyether-ether-ketone.
Figure 9. Clinical application of a 3D-printed PEEK radial prosthesis. (A) CT image. (B) Surgical plan of radial reconstruction. (C) Design of the radial prosthesis. (D) Photograph of the 3D-printed PEEK radial prosthesis. (E) Photographs of the prosthesis, tumour and medical model. (F) Intraoperative photograph. 3D: three-dimensional; CT: computed tomography; PEEK: polyether-ether-ketone.
Figure 10. 3D-printed PEEK femoral segmental prosthesis. (A) 3D model of the femur with tumour. (B) Femur of healthy side. (C) FEA results of the PEEK femoral prosthesis. (D) Force-displacement curve of the 3D-printed PEEK femoral prosthesis. (E) Intraoperative photograph. 3D: three-dimensional; FEA: finite element analysis; PEEK: polyether-ether-ketone.
Figure 11. Biological evaluation of HA/PEEK composites. (A) In vitro cell experiment. (B) Bone-ingrowth in scaffolds of PEEK and 40 wt% HA/PEEK. The red circle indicates the outline of PEEK and HA/PEEK scaffolds in CT images. HA: hydroxyapatite; PEEK: polyether-ether-ketone.
Figure 12. (A) Schematic diagram of screw extrusion printing equipment and (B) heterogeneous specimen. CF: carbon fibre; HA: hydroxyapatite; PEEK: polyether-ether-ketone.
1. | Kurtz, S. M. Chapter 1 - An overview of PEEK biomaterials. In PEEK biomaterials handbook (Second Edition), Kurtz, S. M., ed. William Andrew Publishing: 2019; pp 3-9. |
2. |
Panayotov, I. V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016, 27, 118.
doi: 10.1007/s10856-016-5731-4 URL |
3. | American Society of Testing Materials. ASTM F2026-17: Standard Specification for Polyetheretherketon (PEEK) Polymers for Surgical Implant Applications. |
4. |
Zanotti, B.; Zingaretti, N.; Verlicchi, A.; Robiony, M.; Alfieri, A.; Parodi, P. C. Cranioplasty: review of materials. J Craniofac Surg. 2016, 27, 2061-2072.
doi: 10.1097/SCS.0000000000003025 URL |
5. | Kim, S. R.; Kim, D. H.; Kim, D. J.; Kim, M. H.; Park, J. M. Study on thermal conductivity of polyetheretherketone/thermally conductive filler composites. Solid State Phenomena. 2007, 124-6, 1079-1082. |
6. | Feldmann, A.; Wili, P.; Maquer, G.; Zysset, P. The thermal conductivity of cortical and cancellous bone. Eur Cell Mater. 2018, 35, 25-33. |
7. |
Kurtz, S. M.; Devine, J. N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007, 28, 4845-4869.
doi: 10.1016/j.biomaterials.2007.07.013 URL |
8. |
Seaman, S.; Kerezoudis, P.; Bydon, M.; Torner, J. C.; Hitchon, P. W. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci. 2017, 44, 23-29.
doi: 10.1016/j.jocn.2017.06.062 URL |
9. |
Rao, P. J.; Pelletier, M. H.; Walsh, W. R.; Mobbs, R. J. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014, 6, 81-89.
doi: 10.1111/os.12098 URL |
10. |
Cowie, R. M.; Briscoe, A.; Fisher, J.; Jennings, L. M. PEEK-OPTIMA(TM) as an alternative to cobalt chrome in the femoral component of total knee replacement: A preliminary study. Proc Inst Mech Eng H. 2016, 230, 1008-1015.
doi: 10.1177/0954411916667410 URL |
11. | Schierjott, R. A.; Giurea, A.; Neuhaus, H. J.; Schwiesau, J.; Pfaff, A. M.; Utzschneider, S.; Tozzi, G.; Grupp, T. M. Analysis of carbon fiber reinforced PEEK hinge mechanism articulation components in a rotating hinge knee design: a comparison of in vitro and retrieval findings. Biomed Res Int. 2016, 2016, 7032830. |
12. |
Guzzini, M.; Lanzetti, R. M.; Lupariello, D.; Morelli, F.; Princi, G.; Perugia, D.; Ferretti, A. Comparison between carbon-peek plate and conventional stainless steal plate in ankle fractures. A prospective study of two years follow up. Injury. 2017, 48, 1249-1252.
doi: 10.1016/j.injury.2017.03.035 URL |
13. |
Ma, Z.; Zhao, X.; Zhao, J.; Zhao, Z.; Wang, Q.; Zhang, C. biologically modified polyether ether ketone as dental implant material. Front Bioeng Biotechnol. 2020, 8, 620537.
doi: 10.3389/fbioe.2020.620537 URL |
14. | Wiesli, M. G.; Özcan, M. High-performance polymers and their potential application as medical and oral implant materials: a review. Implant Dent. 2015, 24, 448-457. |
15. |
Jiang, X.; Yao, Y.; Tang, W.; Han, D.; Zhang, L.; Zhao, K.; Wang, S.; Meng, Y. Design of dental implants at materials level: An overview. J Biomed Mater Res A. 2020, 108, 1634-1661.
doi: 10.1002/jbm.a.36931 URL |
16. |
Zhao, F.; Li, D.; Jin, Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials (Basel). 2018, 11, 288.
doi: 10.3390/ma11020288 URL |
17. | Haleem, A.; Javaid, M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob Health. 2019, 7, 571-577. |
18. |
He, J.; Li, D.; Lu, B.; Wang, Z.; Tao, Z. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng H. 2006, 220, 823-830.
doi: 10.1243/09544119JEIM207 URL |
19. |
Harrysson, O. L.; Hosni, Y. A.; Nayfeh, J. F. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord. 2007, 8, 91.
doi: 10.1186/1471-2474-8-91 URL |
20. |
Murr, L. E. Additive manufacturing of biomedical devices: an overview. Mater Technol. 2018, 33, 57-70.
doi: 10.1080/10667857.2017.1389052 URL |
21. |
Moiduddin, K. Implementation of computer-assisted design, analysis, and additive manufactured customized mandibular implants. J Med Biol Eng. 2018, 38, 744-756.
doi: 10.1007/s40846-018-0370-5 URL |
22. |
Ackland, D. C.; Robinson, D.; Redhead, M.; Lee, P. V. S.; Moskaljuk, A.; Dimitroulis, G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J Mech Behav Biomed Mater. 2017, 69, 404-411.
doi: 10.1016/j.jmbbm.2017.01.048 URL |
23. |
Norman, P.; Iyengar, S.; Svensson, I.; Flivik, G. Fatigue fracture in dual modular revision total hip arthroplasty stems: failure analysis and computed tomography diagnostics in two cases. J Arthroplasty. 2014, 29, 850-855.
doi: 10.1016/j.arth.2013.09.008 URL |
24. |
Giesinger, K.; Ebneter, L.; Day, R. E.; Stoffel, K. K.; Yates, P. J.; Kuster, M. S. Can plate osteosynthesis of periprosthethic femoral fractures cause cement mantle failure around a stable hip stem? A biomechanical analysis. J Arthroplasty. 2014, 29, 1308-1312.
doi: 10.1016/j.arth.2013.12.015 URL |
25. |
Westerman, A. P.; Moor, A. R.; Stone, M. H.; Stewart, T. D. Hip stem fatigue: The implications of increasing patient mass. Proc Inst Mech Eng H. 2018, 232, 520-530.
doi: 10.1177/0954411918767200 URL |
26. |
de Oliveira, B. J. S.; Campanelli, L. C.; Oliveira, D. P.; de Bribean Guerra, A. P.; Bolfarini, C. Surface characterization and fatigue performance of a chemical-etched Ti-6Al-4V femoral stem for cementless hip arthroplasty. Surf Coat Technol. 2017, 309, 1126-1134.
doi: 10.1016/j.surfcoat.2016.05.011 URL |
27. |
Dong, E.; Iqbal, T.; Fu, J.; Li, D.; Liu, B.; Guo, Z.; Cuadrado, A.; Zhen, Z.; Wang, L.; Fan, H. Preclinical strength checking for artificial pelvic prosthesis under multi-activities - a case study. J Bionic Eng. 2019, 16, 1092-1102.
doi: 10.1007/s42235-019-0121-5 URL |
28. |
Mathai, B.; Dhara, S.; Gupta, S. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation. Biomech Model Mechanobiol. 2021, 20, 1115-1134.
doi: 10.1007/s10237-021-01436-6 URL |
29. |
Majumdar, T.; Eisenstein, N.; Frith, J. E.; Cox, S. C.; Birbilis, N. Additive manufacturing of titanium alloys for orthopedic applications: a materials science viewpoint. Adv Eng Mater. 2018, 20, 1800172.
doi: 10.1002/adem.201800172 URL |
30. |
Sun, C.; Wang, L.; Kang, J.; Li, D.; Jin, Z. Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng. 2018, 15, 693-702.
doi: 10.1007/s42235-018-0057-1 URL |
31. | Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y. M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016, 83, 127-141. |
32. |
Hedayati, R.; Janbaz, S.; Sadighi, M.; Mohammadi-Aghdam, M.; Zadpoor, A. A. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials? J Mech Behav Biomed Mater. 2017, 65, 831-841.
doi: 10.1016/j.jmbbm.2016.10.003 URL |
33. |
Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016, 59, 690-701.
doi: 10.1016/j.msec.2015.10.069 URL |
34. |
Bessard, E.; De Almeida, O.; Bernhart, G. Unified isothermal and non-isothermal modelling of neat PEEK crystallization. J Therm Anal Calorim. 2014, 115, 1669-1678.
doi: 10.1007/s10973-013-3308-8 URL |
35. |
Zanjanijam, A. R.; Major, I.; Lyons, J. G.; Lafont, U.; Devine, D. M. Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers. 2020, 12, 1665.
doi: 10.3390/polym12081665 URL |
36. |
Singh, S.; Prakash, C.; Ramakrishna, S. 3D printing of polyether-ether-ketone for biomedical applications. Eur Polym J. 2019, 114, 234-248.
doi: 10.1016/j.eurpolymj.2019.02.035 URL |
37. |
Kang, J.; Wang, L.; Yang, C.; Wang, L.; Yi, C.; He, J.; Li, D. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018, 17, 1083-1092.
doi: 10.1007/s10237-018-1015-x URL |
38. |
Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res. 2017, 35, 1774-1783.
doi: 10.1002/jor.23445 URL |
39. |
Ahirwar, H.; Gupta, V. K.; Nanda, H. S. Finite element analysis of fixed bone plates over fractured femur model. Comput Methods Biomech Biomed Engin. 2021, 24, 1742-1751.
doi: 10.1080/10255842.2021.1918123 URL |
40. |
Cameron, H. U.; Pilliar, R. M.; MacNab, I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res. 1973, 7, 301-311.
doi: 10.1002/jbm.820070404 URL |
41. |
Maniatopoulos, C.; Pilliar, R. M.; Smith, D. C. Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model. J Biomed Mater Res. 1986, 20, 1309-1333.
doi: 10.1002/jbm.820200907 URL |
42. | Li, Z.; Müller, R.; Ruffoni, D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res. 2018, 36, 584-593. |
43. |
Cheong, V. S.; Fromme, P.; Mumith, A.; Coathup, M. J.; Blunn, G. W. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. J Mech Behav Biomed Mater. 2018, 87, 230-239.
doi: 10.1016/j.jmbbm.2018.07.019 URL |
44. | Adell, R.; Hansson, B. O.; Brånemark, P. I.; Breine, U. Intra-osseous anchorage of dental prostheses. II. Review of clinical approaches. Scand J Plast Reconstr Surg. 1970, 4, 19-34. |
45. |
Wang, S.; Zhou, X.; Liu, L.; Shi, Z.; Hao, Y. On the design and properties of porous femoral stems with adjustable stiffness gradient. Med Eng Phys. 2020, 81, 30-38.
doi: 10.1016/j.medengphy.2020.05.003 URL |
46. |
Li, J.; Cui, X.; Hooper, G. J.; Lim, K. S.; Woodfield, T. B. F. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater. 2020, 105, 103671.
doi: 10.1016/j.jmbbm.2020.103671 URL |
47. |
Yan, M.; Tian, X.; Peng, G.; Li, D.; Zhang, X. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos Sci Technol. 2018, 165, 140-147.
doi: 10.1016/j.compscitech.2018.06.023 URL |
48. |
Yan, R.; Xie, C.; Zhao, Z.; Li, J. Optimization of selective laser sintering process parameters based on PA12 powders for bone tissue scaffolds. 3D Print Addit Manuf. 2021. doi: 10.1089/3dp.2021.0111.
doi: 10.1089/3dp.2021.0111 URL |
49. |
Peng, F.; Zhao, Z.; Xia, X.; Cakmak, M.; Vogt, B. D. Enhanced impact resistance of three-dimensional-printed parts with structured filaments. ACS Appl Mater Interfaces. 2018, 10, 16087-16094.
doi: 10.1021/acsami.8b00866 URL |
50. |
Kumar, P.; Ahuja, I. P. S.; Singh, R. Application of fusion deposition modelling for rapid investment casting - a review. Int J Mater Eng Innov. 2012, 3, 204-227.
doi: 10.1504/IJMATEI.2012.049254 URL |
51. | Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R. B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit Manuf. 2018, 21, 1-16. |
52. |
Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017, 248, 1-7.
doi: 10.1016/j.jmatprotec.2017.04.027 URL |
53. |
Wang, L.; Huang, L.; Li, X.; Zhong, D.; Li, D.; Cao, T.; Yang, S.; Yan, X.; Zhao, J.; He, J.; Cao, Y.; Wang, L. Three-dimensional printing PEEK implant: a novel choice for the reconstruction of chest wall defect. Ann Thorac Surg. 2019, 107, 921-928.
doi: 10.1016/j.athoracsur.2018.09.044 URL |
54. |
Luo, M.; Tian, X.; Zhu, W.; Li, D. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion. J Mater Res. 2018, 33, 1632-1641.
doi: 10.1557/jmr.2018.131 URL |
55. |
Deng, X.; Zeng, Z.; Peng, B.; Yan, S.; Ke, W. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials (Basel). 2018, 11, 216.
doi: 10.3390/ma11020216 URL |
56. |
Khunt, C. P.; Makhesana, M. A.; Mawandiya, B. K.; Patel, K. M. Investigations on the influence of printing parameters during processing of biocompatible polymer in fused deposition modelling (FDM). Adv Mater Process Technol. 2021. doi: 10.1080/2374068X.2021.1927651.
doi: 10.1080/2374068X.2021.1927651 URL |
57. |
Wang, P.; Zou, B.; Xiao, H.; Ding, S.; Huang, C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol. 2019, 271, 62-74.
doi: 10.1016/j.jmatprotec.2019.03.016 URL |
58. |
Park, S. J.; Lee, J. E.; Park, J.; Lee, N. K.; Son, Y.; Park, S. H. High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Mater Des. 2021, 211, 110163.
doi: 10.1016/j.matdes.2021.110163 URL |
59. |
Basgul, C.; Yu, T.; MacDonald, D. W.; Siskey, R.; Marcolongo, M.; Kurtz, S. M. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages? J Mech Behav Biomed Mater. 2020, 102, 103455.
doi: 10.1016/j.jmbbm.2019.103455 URL |
60. |
Alkhaibary, A.; Alharbi, A.; Alnefaie, N.; Oqalaa Almubarak, A.; Aloraidi, A.; Khairy, S. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg. 2020, 139, 445-452.
doi: 10.1016/j.wneu.2020.04.211 URL |
61. |
Aydin, S.; Kucukyuruk, B.; Abuzayed, B.; Aydin, S.; Sanus, G. Z. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract. 2011, 2, 162-167.
doi: 10.4103/0976-3147.83584 URL |
62. |
Bonda, D. J.; Manjila, S.; Selman, W. R.; Dean, D. The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions. Neurosurgery. 2015, 77, 814-824; discussion 824.
doi: 10.1227/NEU.0000000000000899 URL |
63. |
Sharma, N.; Aghlmandi, S.; Dalcanale, F.; Seiler, D.; Zeilhofer, H. F.; Honigmann, P.; Thieringer, F. M. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int J Mol Sci. 2021, 22, 8521.
doi: 10.3390/ijms22168521 URL |
64. |
Feroze, A. H.; Walmsley, G. G.; Choudhri, O.; Lorenz, H. P.; Grant, G. A.; Edwards, M. S. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J Neurosurg. 2015, 123, 1098-1107.
doi: 10.3171/2014.11.JNS14622 URL |
65. |
Fiaschi, P.; Pavanello, M.; Imperato, A.; Dallolio, V.; Accogli, A.; Capra, V.; Consales, A.; Cama, A.; Piatelli, G. Surgical results of cranioplasty with a polymethylmethacrylate customized cranial implant in pediatric patients: a single-center experience. J Neurosurg Pediatr. 2016, 17, 705-710.
doi: 10.3171/2015.10.PEDS15489 URL |
66. |
Lethaus, B.; Safi, Y.; ter Laak-Poort, M.; Kloss-Brandstätter, A.; Banki, F.; Robbenmenke, C.; Steinseifer, U.; Kessler, P. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma. 2012, 29, 1077-1083.
doi: 10.1089/neu.2011.1794 URL |
67. |
Punchak, M.; Chung, L. K.; Lagman, C.; Bui, T. T.; Lazareff, J.; Rezzadeh, K.; Jarrahy, R.; Yang, I. Outcomes following polyetheretherketone (PEEK) cranioplasty: systematic review and meta-analysis. J Clin Neurosci. 2017, 41, 30-35.
doi: 10.1016/j.jocn.2017.03.028 URL |
68. |
Yen, C. I.; Chen, R. F.; Zelken, J.; Chang, C. S.; Yang, S. Y.; Chen, H. C.; Chang, S. Y.; Yang, J. Y.; Chuang, S. S.; Hsiao, Y. C. The influence of paranasal augmentation on the measurement of the nose for the treatment of midfacial concavity. Aesthet Surg J. 2018, 38, 241-251.
doi: 10.1093/asj/sjx166 URL |
69. |
de Moraes Ferreira, A. C.; Muñoz, X. M.; Okamoto, R.; Pellizer, E. P.; Garcia, I. R., Jr. Postoperative complications in craniomaxillofacial reconstruction with medpor. J Craniofac Surg. 2016, 27, 425-428.
doi: 10.1097/SCS.0000000000002325 URL |
70. |
Kim, J. H.; Jung, M. S.; Lee, B. H.; Jeong, H. S.; Suh, I. S.; Ahn, D. K. Silicone implant-based paranasal augmentation for mild midface concavity. Arch Craniofac Surg. 2016, 17, 20-24.
doi: 10.7181/acfs.2016.17.1.20 URL |
71. |
Kang, J.; Zhang, J.; Zheng, J.; Wang, L.; Li, D.; Liu, S. 3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater. 2021, 116, 104335.
doi: 10.1016/j.jmbbm.2021.104335 URL |
72. |
Berthet, J. P.; Wihlm, J. M.; Canaud, L.; Joyeux, F.; Cosma, C.; Hireche, K.; Alric, P.; Marty-Ané, C. H. The combination of polytetrafluoroethylene mesh and titanium rib implants: an innovative process for reconstructing large full thickness chest wall defects. Eur J Cardiothorac Surg. 2012, 42, 444-453.
doi: 10.1093/ejcts/ezs028 URL |
73. | Li, D. C.; Yang, C. C.; Kang, J. F.; Wang, L.; Huang, L. J.; Wang, L.; Cao, Y.; Shi, C. Q.; Lian, Q. Precision design and control-performance manufacturing research of large-size individualized PEEK implants. Jixie Gongcheng Xuebao. 2018, 54, 121-125. |
74. |
Zhang, C.; Wang, L.; Kang, J.; Fuentes, O. M.; Li, D. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. J Mech Behav Biomed Mater. 2020, 103, 103561.
doi: 10.1016/j.jmbbm.2019.103561 URL |
75. | Capanna, R.; Totti, F.; Van der Geest, I. C.; Müller, D. A. Scapular allograft reconstruction after total scapulectomy: surgical technique and functional results. J Shoulder Elbow Surg. 2015, 24, e203-211. |
76. |
Wang, B.; Wu, Q.; Zhang, Z.; Liu, J.; Shao, Z. Reconstruction with constrained scapular prosthesis after total scapulectomy for scapular malignant tumor. J Surg Oncol. 2018, 118, 177-183.
doi: 10.1002/jso.25118 URL |
77. |
Lacroix, D.; Murphy, L. A.; Prendergast, P. J. Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng. 2000, 122, 430-436.
doi: 10.1115/1.1286318 URL |
78. |
Zheng, J.; Kang, J.; Sun, C.; Yang, C.; Wang, L.; Li, D. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. J Mech Behav Biomed Mater. 2021, 118, 104475.
doi: 10.1016/j.jmbbm.2021.104475 URL |
79. | Liu, D.; Fu, J.; Fan, H.; Li, D.; Dong, E.; Xiao, X.; Wang, L.; Guo, Z. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma:case report. J Bone Oncol. 2018, 12, 78-82. |
80. |
Barik, S.; Jain, A.; Ahmad, S.; Singh, V. Functional outcome in giant cell tumor of distal radius treated with excision and fibular arthroplasty: a case series. Eur J Orthop Surg Traumatol. 2020, 30, 1109-1117.
doi: 10.1007/s00590-020-02679-2 URL |
81. |
Wiratnaya, I. G. E.; Budiartha, I.; Setiawan, I.; Sindhughosa, D. A.; Kawiyana, I. K. S.; Astawa, P. Hernia mesh prevent dislocation after wide excision and reconstruction of giant cell tumor distal radius. World J Orthop. 2017, 8, 741-746.
doi: 10.5312/wjo.v8.i9.741 URL |
82. |
Liu, W.; Wang, B.; Zhang, S.; Li, Y.; Hu, B.; Shao, Z. Wrist reconstruction after en bloc resection of bone tumors of the distal radius. Orthop Surg. 2021, 13, 376-383.
doi: 10.1111/os.12737 URL |
83. |
Saikia, K. C.; Borgohain, M.; Bhuyan, S. K.; Goswami, S.; Bora, A.; Ahmed, F. Resection-reconstruction arthroplasty for giant cell tumor of distal radius. Indian J Orthop. 2010, 44, 327-332.
doi: 10.4103/0019-5413.65134 URL |
84. |
Lu, M.; Min, L.; Xiao, C.; Li, Y.; Luo, Y.; Zhou, Y.; Zhang, W.; Tu, C. Uncemented three-dimensional-printed prosthetic replacement for giant cell tumor of distal radius: a new design of prosthesis and surgical techniques. Cancer Manag Res. 2018, 10, 265-277.
doi: 10.2147/CMAR.S146434 URL |
85. | Qassemyar, Q.; Assouly, N.; Madar, Y.; Temam, S.; Kolb, F. Total nasal reconstruction with 3D custom made porous titanium prosthesis and free thoracodorsal artery perforator flap:A case report. Microsurgery. 2018, 38, 567-571. |
86. |
Pang, X.; Wang, L.; Wang, Z.; Geng, L. E. I.; Li, D.; Jin, Z.; Liu, C.; Zhang, C. Finite element analysis of total knee replacement with various misalignment angles in the sagittal plane. J Mech Med Biol. 2016, 16, 1650096.
doi: 10.1142/S0219519416500962 URL |
87. |
Sevelda, F.; Schuh, R.; Hofstaetter, J. G.; Schinhan, M.; Windhager, R.; Funovics, P. T. Total femur replacement after tumor resection: limb salvage usually achieved but complications and failures are common. Clin Orthop Relat Res. 2015, 473, 2079-2087.
doi: 10.1007/s11999-015-4282-1 URL |
88. | Ji, Y.; Wu, Y.; Li, J. Use of three-dimensional-printed custom-made prosthesis to treat unicondylar femoral defect secondary to pathological fracture caused by giant cell tumor. J Int Med Res. 2021, 49, 3000605211025347. |
89. |
Park, J. W.; Kang, H. G.; Kim, J. H.; Kim, H. S. 3D-printed connector for revision limb salvage surgery in long bones previously using customized implants. Metals. 2021, 11, 707.
doi: 10.3390/met11050707 URL |
90. |
Vaezi, M.; Yang, S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyp. 2015, 10, 123-135.
doi: 10.1080/17452759.2015.1097053 URL |
91. |
Zheng, J.; Zhao, H.; Dong, E.; Kang, J.; Liu, C.; Sun, C.; Li, D.; Wang, L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2021, 128, 112333.
doi: 10.1016/j.msec.2021.112333 URL |
92. |
Guo, C.; Lu, R.; Wang, X.; Chen, S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. J Mater Sci Mater Med. 2021, 32, 135.
doi: 10.1007/s10856-021-06614-7 URL |
93. |
Lee, J. H.; Jang, H. L.; Lee, K. M.; Baek, H. R.; Jin, K.; Hong, K. S.; Noh, J. H.; Lee, H. K. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater. 2013, 9, 6177-6187.
doi: 10.1016/j.actbio.2012.11.030 URL |
94. | Gan, K.; Liu, H.; Jiang, L.; Liu, X.; Song, X.; Niu, D.; Chen, T.; Liu, C. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone. Dent Mater. 2016, 32, e263-e274. |
95. |
Torstrick, F. B.; Lin, A. S. P.; Potter, D.; Safranski, D. L.; Sulchek, T. A.; Gall, K.; Guldberg, R. E. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials. 2018, 185, 106-116.
doi: 10.1016/j.biomaterials.2018.09.009 URL |
96. |
Zheng, J.; Dong, E.; Kang, J.; Sun, C.; Liu, C.; Wang, L.; Li, D. Effects of raster angle and material components on mechanical properties of polyether-ether-ketone/calcium silicate scaffolds. Polymers. 2021, 13, 2547.
doi: 10.3390/polym13152547 URL |
97. |
Zheng, J.; Zhao, H.; Ouyang, Z.; Zhou, X.; Kang, J.; Yang, C.; Sun, C.; Xiong, M.; Fu, M.; Jin, D.; Wang, L.; Li, D.; Li, Q. Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos B Eng. 2022, 232, 109508.
doi: 10.1016/j.compositesb.2021.109508 URL |
98. |
Deng, Y.; Zhou, P.; Liu, X.; Wang, L.; Xiong, X.; Tang, Z.; Wei, J.; Wei, S. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces. 2015, 136, 64-73.
doi: 10.1016/j.colsurfb.2015.09.001 URL |
99. |
Han, X.; Yang, D.; Yang, C.; Spintzyk, S.; Scheideler, L.; Li, P.; Li, D.; Geis-Gerstorfer, J.; Rupp, F. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J Clin Med. 2019, 8, 240.
doi: 10.3390/jcm8020240 URL |
100. |
Evans, N. T.; Torstrick, F. B.; Lee, C. S.; Dupont, K. M.; Safranski, D. L.; Chang, W. A.; Macedo, A. E.; Lin, A. S.; Boothby, J. M.; Whittingslow, D. C.; Carson, R. A.; Guldberg, R. E.; Gall, K. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015, 13, 159-167.
doi: 10.1016/j.actbio.2014.11.030 URL |
101. |
Su, Y.; He, J.; Jiang, N.; Zhang, H.; Wang, L.; Liu, X.; Li, D.; Yin, Z. Additively-manufactured poly-ether-ether-ketone (PEEK) lattice scaffolds with uniform microporous architectures for enhanced cellular response and soft tissue adhesion. Mater Des. 2020, 191, 108671.
doi: 10.1016/j.matdes.2020.108671 URL |
102. |
Oladapo, B. I.; Zahedi, S. A.; Ismail, S. O.; Omigbodun, F. T.; Bowoto, O. K.; Olawumi, M. A.; Muhammad, M. A. 3D printing of PEEK-cHAp scaffold for medical bone implant. Bio-des Manuf. 2021, 4, 44-59.
doi: 10.1007/s42242-020-00098-0 URL |
103. |
Nawaz, A.; Bano, S.; Yasir, M.; Wadood, A.; Ur Rehman, M. A. Ag and Mn-doped mesoporous bioactive glass nanoparticles incorporated into the chitosan/gelatin coatings deposited on PEEK/bioactive glass layers for favorable osteogenic differentiation and antibacterial activity. Mater Adv. 2020, 1, 1273-1284.
doi: 10.1039/D0MA00325E URL |
104. |
Di Prima, M.; Coburn, J.; Hwang, D.; Kelly, J.; Khairuzzaman, A.; Ricles, L. Additively manufactured medical products - the FDA perspective. 3D Print Med. 2016, 2, 1.
doi: 10.1186/s41205-016-0005-9 URL |
105. |
Jin, Z.; He, C.; Fu, J.; Han, Q.; He, Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf. 2022. doi: 10.1007/s42242-022-00187-2.
doi: 10.1007/s42242-022-00187-2 URL |
106. | Min, Y.; Lan, W.; Liu, B. Discussion on Administrative Innovation of Medical Device in China and U.S. Zhongguo Yi Liao Qi Xie Za Zhi. 2018, 42, 206-209. |
107. |
Morrison, R. J.; Kashlan, K. N.; Flanangan, C. L.; Wright, J. K.; Green, G. E.; Hollister, S. J.; Weatherwax, K. J. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015, 8, 594-600.
doi: 10.1111/cts.12315 URL |
108. |
Monzón, M. D.; Ortega, Z.; Martínez, A.; Ortega, F. Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol. 2015, 76, 1111-1121.
doi: 10.1007/s00170-014-6334-1 URL |
109. | Ding, H. Y.; Wu, S. T.; Yuan, K.; Shu, C. P.; Wang, F.; Chen, C.; Tang, Y. B.; Jiang, Z. Y. Research progress of standards on additive manufacturing. Zhongguo Cailiao Jinzhan. 2020, 39, 955-961. |
110. | American National Standards Institute. ASTM F3333-20: Standard specification for chopped carbon fiber reinforced (CFR) polyetheretherketion (PEEK) polymers for surgical implant applications. 2020. |
111. | International Organization for Standardization. ISO 15309:2013:Implants for surgery — Differential scanning calorimetry of poly ether ether ketone (PEEK) polymers and compounds for use in implantable medical devices. |
112. | Center for Medical Device Evaluation; National Medical Products Administration. The announcement of technical review guidance for registration of AM PEEK orthopaedic implant. https://www.cmde.org.cn/CL0050/25174.html. Accessed February 28, 2022. |
[1] | Seyed Ataollah Naghavi, Changning Sun, Mahbubeh Hejazi, Maryam Tamaddon, Jibao Zheng, Leilei Wang, Chenrui Zhang, Swastina Nath Varma, Dichen Li, Mehran Moazen, Ling Wang, Chaozong Liu. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects [J]. Biomaterials Translational, 2022, 3(2): 142-151. |
[2] | Xiaowen Xu, Jie Song. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds [J]. Biomaterials Translational, 2020, 1(1): 33-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||