Biomaterials Translational ›› 2022, Vol. 3 ›› Issue (3): 175-187.doi: 10.12336/biomatertransl.2022.03.002
• REVIEW • Previous Articles Next Articles
Zhao–Lin Zeng2,3, Hui Xie1,*()
Received:
2022-04-28
Revised:
2022-05-19
Accepted:
2022-08-02
Online:
2022-09-28
Published:
2022-09-28
Contact:
Hui Xie
E-mail:huixie@csu.edu.cn
About author:
Hui Xie, huixie@csu.edu.cn.Zeng, Z. L.; Xie, H. Mesenchymal stem cellderived extracellular vesicles: a possible therapeutic strategy for orthopaedic diseases: a narrative review. Biomater Transl. 2022, 3(3), 175-187.
Embryonic stem cells | Induced pluripotent stem cells | Somatic or adult stem cells | |
---|---|---|---|
Source | Inner cell mass of the blastocyst | Reprogrammed somatic cells | Tissue–specific protocols from different tissues |
Differentiation potential | Can differentiate into cell types of all three germ lineages | Can differentiate into cell types of all three germ lineages | Can only differentiate into limited cell types |
Self–renewal | Complete | Complete | Limited |
Proliferative capacity | Strongest | Powerful | Weak and cannot be maintained for a long periods |
Tumorigenicity | Yes | Yes | No |
Ethical controversy | Yes | No | No |
Table 1. Comparison of the characteristics of different stem cells
Embryonic stem cells | Induced pluripotent stem cells | Somatic or adult stem cells | |
---|---|---|---|
Source | Inner cell mass of the blastocyst | Reprogrammed somatic cells | Tissue–specific protocols from different tissues |
Differentiation potential | Can differentiate into cell types of all three germ lineages | Can differentiate into cell types of all three germ lineages | Can only differentiate into limited cell types |
Self–renewal | Complete | Complete | Limited |
Proliferative capacity | Strongest | Powerful | Weak and cannot be maintained for a long periods |
Tumorigenicity | Yes | Yes | No |
Ethical controversy | Yes | No | No |
Vesicles | Size (nm) | Density (g/mL) | Origin | Markers | Membrane permeability |
---|---|---|---|---|---|
Exosomes | 30–150 | 1.13–1.18 | Endosomes | Tetraspanins (CD9, CD63, CD81), TSG101, ALIX | Impermeable |
Microvesicles | 200–1000 | 1.16–1.19 | Budding of plasma membrane | Integrins, selectins, CD40 | Impermeable |
Apoptotic bodies | >1000 | 1.16–1.28 | Release after apoptosis | Propidium iodide positive Phosphatidylserine DNA fragmentation | Permeable |
Table 2. Characteristics of the major types of extracellular vesicles
Vesicles | Size (nm) | Density (g/mL) | Origin | Markers | Membrane permeability |
---|---|---|---|---|---|
Exosomes | 30–150 | 1.13–1.18 | Endosomes | Tetraspanins (CD9, CD63, CD81), TSG101, ALIX | Impermeable |
Microvesicles | 200–1000 | 1.16–1.19 | Budding of plasma membrane | Integrins, selectins, CD40 | Impermeable |
Apoptotic bodies | >1000 | 1.16–1.28 | Release after apoptosis | Propidium iodide positive Phosphatidylserine DNA fragmentation | Permeable |
Figure 1. Exosome morphology and structure. The upper image represents the morphology of exosomes (produced by mouse hepatocytes) under a transmission electron microscope; below is a schematic diagram of the structure and composition of exosomes. ALIX: apoptosis–linked gene 2–interacting protein X; EGFR: epidermal growth factor receptor; GAPDH: glyceraldehyde 3–phosphate dehydrogenase; HSP90: heat shock protein 90; ICAM: intercellular adhesion molecule; lncRNA: long non–coding RNA; MHC: major histocompatibility complex; miRNA: microRNA; PGFR: platelet–derived growth factor receptor; RAB: Rab GTPases; TEM: transmission electron microscope; TSG101: tumour susceptibility gene 101. This figure was created using Servier Medical Art templates (https://smart.servier.com).
Figure 2. Multi–factors involved in maintaining bone homeostasis. Bone homeostasis is the cornerstone of bone health, created by a dynamic balance between osteoclasts, osteoblasts, osteocytes and the equilibrium between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells, in which mesenchymal stem cells and mesenchymal stem cell–derived extracellular vesicles play essential roles. PPAR–γ: peroxisome proliferator–activated receptor γ; TGF–β: transforming growth factor β. This figure was created using Servier Medical Art templates (https://smart.servier.com).
Figure 3. Summary of MSC–derived extracellular vesicles in the treatment of bone diseases. Natural/genetic or chemically–modified MSC–derived extracellular vesicles can regulate a series of biological processes by carrying RNA and protein to target cells, and exert therapeutic effects on bone diseases. GPNMB: glycoprotein nonmelanoma clone B; lncRNA: long non–coding RNA; MALAT1: metastasis–associated lung adenocarcinoma transcript 1; MSC: mesenchymal stem cell. This figure was created using Servier Medical Art templates (https://smart.servier.com).
Diseases | Source of EVs | Main contents of EVs | Main mechanism | Effect | Reference |
---|---|---|---|---|---|
OP | BMSCs | lncRNA MALAT1 | Sponge miR–34c, upregulate SATB2 | Alleviates OP | |
OP | BMSCs | miRNA–150–3p | Promote osteoblast proliferation and differentiation | Mitigate OP | |
OP | BMSCs | GPNMB | Activate Wnt/β–catenin signalling | Alleviate OP | |
OP | BMSCs | miR–188 | Promote osteogenesis and inhibit adipogenic differentiation | Alleviate OP | |
OP | BMSCs from OVX mice | miR–214–3p | Inhibit type H vessel formation, and bone mineral density and contents | Aggravate OP | |
ONFH | GC–treated BMSCs | miR–451 | Increase the level of PAI–1 | Aggravate ONFH | |
ONFH | BMSCs | miR–122–5p | RTK/Ras/MAPK signalling pathway | Promote ONFH healing | |
ONFH | hUCMSCs | miR–21 | PTEN–AKT pathway | Promote ONFH healing | |
OA | SMSCs | Wnt5a and Wnt5b | Activate the YAP signalling pathway | Alleviate OA | |
OA | Ad–MSCs | Unknown | Inhibit inflammation and MMP activity | Alleviate OA | |
OA | MSCIPFP | miR–100–5p | Inhibit mTOR signalling | Alleviate OA | |
OS | Ad–MSCs | Unknown | Promote osteosarcoma cell invasion, migration, and proliferation | Promote OS progression | |
OS | BMSCs | hsa–miR–148a | Promote OS cell proliferation, metastasis and prevent apoptosis | Promote OS progression | |
OS | BMSCs | lncRNA MALAT1 | lncRNA MALAT1/miR–143/NRSN2/Wnt/β–catenin pathway | Promote OS progression | |
OS | BMSCs | miR–206 | miR–206/TRA2B | Suppress OS progression | |
BF | BMSCs | miR–335 | miR–335/VapB/Wnt/β–catenin pathway | Promoted BF recovery | |
BF | Aged–BMSCs | miR–128–3p | miR–128–3p/Smad8 pathway | Inhibition of BF healing | |
BF | BMSCs | miR–126 | SPRED1/Ras/Erk pathway | Promoted BF recovery |
Table 3. Summary of the role of MSC–EVs in orthopaedic diseases
Diseases | Source of EVs | Main contents of EVs | Main mechanism | Effect | Reference |
---|---|---|---|---|---|
OP | BMSCs | lncRNA MALAT1 | Sponge miR–34c, upregulate SATB2 | Alleviates OP | |
OP | BMSCs | miRNA–150–3p | Promote osteoblast proliferation and differentiation | Mitigate OP | |
OP | BMSCs | GPNMB | Activate Wnt/β–catenin signalling | Alleviate OP | |
OP | BMSCs | miR–188 | Promote osteogenesis and inhibit adipogenic differentiation | Alleviate OP | |
OP | BMSCs from OVX mice | miR–214–3p | Inhibit type H vessel formation, and bone mineral density and contents | Aggravate OP | |
ONFH | GC–treated BMSCs | miR–451 | Increase the level of PAI–1 | Aggravate ONFH | |
ONFH | BMSCs | miR–122–5p | RTK/Ras/MAPK signalling pathway | Promote ONFH healing | |
ONFH | hUCMSCs | miR–21 | PTEN–AKT pathway | Promote ONFH healing | |
OA | SMSCs | Wnt5a and Wnt5b | Activate the YAP signalling pathway | Alleviate OA | |
OA | Ad–MSCs | Unknown | Inhibit inflammation and MMP activity | Alleviate OA | |
OA | MSCIPFP | miR–100–5p | Inhibit mTOR signalling | Alleviate OA | |
OS | Ad–MSCs | Unknown | Promote osteosarcoma cell invasion, migration, and proliferation | Promote OS progression | |
OS | BMSCs | hsa–miR–148a | Promote OS cell proliferation, metastasis and prevent apoptosis | Promote OS progression | |
OS | BMSCs | lncRNA MALAT1 | lncRNA MALAT1/miR–143/NRSN2/Wnt/β–catenin pathway | Promote OS progression | |
OS | BMSCs | miR–206 | miR–206/TRA2B | Suppress OS progression | |
BF | BMSCs | miR–335 | miR–335/VapB/Wnt/β–catenin pathway | Promoted BF recovery | |
BF | Aged–BMSCs | miR–128–3p | miR–128–3p/Smad8 pathway | Inhibition of BF healing | |
BF | BMSCs | miR–126 | SPRED1/Ras/Erk pathway | Promoted BF recovery |
Source of extracellular vesicles | Extracellular vesicle modification | Scaffolds | Main function | Reference |
---|---|---|---|---|
hMSCs | Osteoinduction | 3D–printed titanium alloy scaffolds | Induce osteogenic differentiation of hMSCs | |
BMSCs | Osteoinduction | Functionalised decalcified bone matrix scaffolds | Pro–angiogenic and pro–osteogenic regeneration | |
hASCs | Osteoinduction | Polydopamine–coating PLGA scaffolds | Enhance the migration, proliferation and osteogenic differentiation of hBMSCs | |
hiPS–MSCs | – | Exosome/β–TCP combination scaffold | Activating the PI3K/Akt signalling pathway and promoting osteogenic differentiation | |
hiPS–MSCs | – | β–TCP scaffolds | Pro–angiogenic and pro–osteogenic differentiation | |
hucMSCs | – | CHA/SF/GCS/DF–PEG hydrogel | Promote osteogenic differentiation | |
hGMSCs | – | 3D–PLA scaffolds | Promote osteogenic differentiation | |
hucMSCs | – | HA–ALG hydrogel scaffolds | Promote the proliferation, migration, and osteogenic differentiation |
Table 4. Application of mesenchymal stem cell–derived extracellular vesicle–integrated biomaterial scaffolds in orthopaedic diseases
Source of extracellular vesicles | Extracellular vesicle modification | Scaffolds | Main function | Reference |
---|---|---|---|---|
hMSCs | Osteoinduction | 3D–printed titanium alloy scaffolds | Induce osteogenic differentiation of hMSCs | |
BMSCs | Osteoinduction | Functionalised decalcified bone matrix scaffolds | Pro–angiogenic and pro–osteogenic regeneration | |
hASCs | Osteoinduction | Polydopamine–coating PLGA scaffolds | Enhance the migration, proliferation and osteogenic differentiation of hBMSCs | |
hiPS–MSCs | – | Exosome/β–TCP combination scaffold | Activating the PI3K/Akt signalling pathway and promoting osteogenic differentiation | |
hiPS–MSCs | – | β–TCP scaffolds | Pro–angiogenic and pro–osteogenic differentiation | |
hucMSCs | – | CHA/SF/GCS/DF–PEG hydrogel | Promote osteogenic differentiation | |
hGMSCs | – | 3D–PLA scaffolds | Promote osteogenic differentiation | |
hucMSCs | – | HA–ALG hydrogel scaffolds | Promote the proliferation, migration, and osteogenic differentiation |
NCT No. | Title | Status | Phase | Disease | Aim | Intervention/treatment | Source of extracellular vesicles | Sponsor/collaborator |
---|---|---|---|---|---|---|---|---|
NCT04223622 | Effects of ASC secretome on human osteochondral explants | Recruiting | Phase I | Osteoarthritis | Development of treatment strategies | Not clear | Adipose–derived stromal cells | Istituto Ortopedico Galeazzi, Italy |
NCT05060107 | Intra–articular injection of MSC–derived exosomes in knee osteoarthritis | Not yet recruiting | Phase I | Osteoarthritis | Development of treatment strategies | Intra–articular knee injection | Allogeneic mesenchymal stromal cells | Francisco Espinoza, Universidad de los Andes, Chile |
NCT05101655 | Construction of microfluidic exosome chip for diagnosis of lung metastasis of osteosarcoma | Enrolling by invitation | – | Osteosarcoma | Development of diagnostic markers | – | Plasma | Ruijin Hospital, China |
NCT03108677 | Circulating exosome RNA in lung metastases of primary high–grade osteosarcoma | Recruiting | – | Osteosarcoma | Development of diagnostic markers | – | Plasma | Ruijin Hospital, China |
Table 5. Summary of the clinical trials involving mesenchymal stem cell–derived extracellular vesicles in orthopaedic diseases
NCT No. | Title | Status | Phase | Disease | Aim | Intervention/treatment | Source of extracellular vesicles | Sponsor/collaborator |
---|---|---|---|---|---|---|---|---|
NCT04223622 | Effects of ASC secretome on human osteochondral explants | Recruiting | Phase I | Osteoarthritis | Development of treatment strategies | Not clear | Adipose–derived stromal cells | Istituto Ortopedico Galeazzi, Italy |
NCT05060107 | Intra–articular injection of MSC–derived exosomes in knee osteoarthritis | Not yet recruiting | Phase I | Osteoarthritis | Development of treatment strategies | Intra–articular knee injection | Allogeneic mesenchymal stromal cells | Francisco Espinoza, Universidad de los Andes, Chile |
NCT05101655 | Construction of microfluidic exosome chip for diagnosis of lung metastasis of osteosarcoma | Enrolling by invitation | – | Osteosarcoma | Development of diagnostic markers | – | Plasma | Ruijin Hospital, China |
NCT03108677 | Circulating exosome RNA in lung metastases of primary high–grade osteosarcoma | Recruiting | – | Osteosarcoma | Development of diagnostic markers | – | Plasma | Ruijin Hospital, China |
1. |
Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 16.
doi: 10.1038/s41413-018-0019-6 URL |
2. |
Kasza, K.; Gurnani, P.; Hardie, K. R.; Cámara, M.; Alexander, C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: a tissue-by-tissue account. Adv Drug Deliv Rev. 2021, 178, 113973.
doi: 10.1016/j.addr.2021.113973 URL |
3. |
Yao, D.; Huang, L.; Ke, J.; Zhang, M.; Xiao, Q.; Zhu, X. Bone metabolism regulation: implications for the treatment of bone diseases. Biomed Pharmacother. 2020, 129, 110494.
doi: 10.1016/j.biopha.2020.110494 URL |
4. |
Rachner, T. D.; Khosla, S.; Hofbauer, L. C. Osteoporosis: now and the future. Lancet. 2011, 377, 1276-1287.
doi: 10.1016/S0140-6736(10)62349-5 URL |
5. |
Zhou, W.; Shi, Y.; Wang, H.; Yu, C.; Zhu, H.; Wu, A. Sinensetin reduces osteoarthritis pathology in the tert-butyl hydroperoxide-treated chondrocytes and the destabilization of the medial meniscus model mice via the AMPK/mTOR signaling pathway. Front Pharmacol. 2021, 12, 713491.
doi: 10.3389/fphar.2021.713491 URL |
6. | Ullah, I.; Subbarao, R. B.; Rho, G. J. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015, 35, e00191. |
7. |
Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008, 8, 726-736.
doi: 10.1038/nri2395 URL |
8. |
Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021, 14, 24.
doi: 10.1186/s13045-021-01037-x URL |
9. | Murphy, M. B.; Moncivais, K.; Caplan, A. I. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013, 45, e54. |
10. |
Ankrum, J. A.; Ong, J. F.; Karp, J. M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014, 32, 252-260.
doi: 10.1038/nbt.2816 URL |
11. | Triffitt, J. T.; Wang, Q. Stem cell fate and microenvironment. Biomater Transl. 2022, 3, 1-2. |
12. |
Zeng, Z. L.; Yuan, Q.; Zu, X.; Liu, J. Insights into the role of mitochondria in vascular calcification. Front Cardiovasc Med. 2022, 9, 879752.
doi: 10.3389/fcvm.2022.879752 URL |
13. |
Yáñez-Mó, M.; Siljander, P. R.; Andreu, Z.; Zavec, A. B.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J. M.; Ghobrial, I. M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N. H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E. M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Linē, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-’t Hoen, E. N.; Nyman, T. A.; O’Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, É.; Del Portillo, H. A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Ostenfeld, M. S.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S. G.; Vasconcelos, M. H.; Wauben, M. H.; De Wever, O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015, 4, 27066.
doi: 10.3402/jev.v4.27066 URL |
14. |
Liu, S.; Xu, X.; Liang, S.; Chen, Z.; Zhang, Y.; Qian, A.; Hu, L. The application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy. Front Cell Dev Biol. 2020, 8, 619.
doi: 10.3389/fcell.2020.00619 URL |
15. |
Mousaei Ghasroldasht, M.; Seok, J.; Park, H. S.; Liakath Ali, F. B.; Al-Hendy, A. Stem cell therapy: from idea to clinical practice. Int J Mol Sci. 2022, 23, 2850.
doi: 10.3390/ijms23052850 URL |
16. |
Nazari, H.; Zhang, L.; Zhu, D.; Chader, G. J.; Falabella, P.; Stefanini, F.; Rowland, T.; Clegg, D. O.; Kashani, A. H.; Hinton, D. R.; Humayun, M. S. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015, 48, 1-39.
doi: 10.1016/j.preteyeres.2015.06.004 URL |
17. |
Ambrosi, T. H.; Longaker, M. T.; Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front Cell Dev Biol. 2019, 7, 189.
doi: 10.3389/fcell.2019.00189 URL |
18. |
Zeng, Z. L.; Lin, X. L.; Tan, L. L.; Liu, Y. M.; Qu, K.; Wang, Z. MicroRNAs: important regulators of induced pluripotent stem cell generation and differentiation. Stem Cell Rev Rep. 2018, 14, 71-81.
doi: 10.1007/s12015-017-9785-6 URL |
19. |
Jin, J. Stem cell treatments. JAMA. 2017, 317, 330.
doi: 10.1001/jama.2016.17822 URL |
20. | Friedenstein, A. J.; Piatetzky, S., II; Petrakova, K. V. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966, 16, 381-390. |
21. |
Caplan, A. I. Mesenchymal stem cells. J Orthop Res. 1991, 9, 641-650.
doi: 10.1002/jor.1100090504 URL |
22. |
Sacchetti, B.; Funari, A.; Michienzi, S.; Di Cesare, S.; Piersanti, S.; Saggio, I.; Tagliafico, E.; Ferrari, S.; Robey, P. G.; Riminucci, M.; Bianco, P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007, 131, 324-336.
doi: 10.1016/j.cell.2007.08.025 URL |
23. | Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019, 2019, 9628536. |
24. |
Huang, Y.; Yang, L. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Res Ther. 2021, 12, 219.
doi: 10.1186/s13287-021-02289-7 URL |
25. |
Boulanger, C. M.; Loyer, X.; Rautou, P. E.; Amabile, N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 2017, 14, 259-272.
doi: 10.1038/nrcardio.2017.7 URL |
26. |
Harding, C. V.; Heuser, J. E.; Stahl, P. D. Exosomes: looking back three decades and into the future. J Cell Biol. 2013, 200, 367-371.
doi: 10.1083/jcb.201212113 URL |
27. |
Johnstone, R. M.; Adam, M.; Hammond, J. R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987, 262, 9412-9420.
doi: 10.1016/S0021-9258(18)48095-7 URL |
28. | Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002, 2, 569-579. |
29. |
Quiñones-Vico, M. I.; Sanabria-de la Torre, R.; Sánchez-Díaz, M.; Sierra-Sánchez, Á.; Montero-Vílchez, T.; Fernández-González, A.; Arias-Santiago, S. The role of exosomes derived from mesenchymal stromal cells in dermatology. Front Cell Dev Biol. 2021, 9, 647012.
doi: 10.3389/fcell.2021.647012 URL |
30. |
Ruan, Z.; Pathak, D.; Venkatesan Kalavai, S.; Yoshii-Kitahara, A.; Muraoka, S.; Bhatt, N.; Takamatsu-Yukawa, K.; Hu, J.; Wang, Y.; Hersh, S.; Ericsson, M.; Gorantla, S.; Gendelman, H. E.; Kayed, R.; Ikezu, S.; Luebke, J. I.; Ikezu, T. Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain. 2021, 144, 288-309.
doi: 10.1093/brain/awaa376 URL |
31. |
Maas, S. L. N.; Breakefield, X. O.; Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017, 27, 172-188.
doi: 10.1016/j.tcb.2016.11.003 URL |
32. |
Akers, J. C.; Gonda, D.; Kim, R.; Carter, B. S.; Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013, 113, 1-11.
doi: 10.1007/s11060-013-1084-8 URL |
33. |
Chotiyarnwong, P.; McCloskey, E. V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 2020, 16, 437-447.
doi: 10.1038/s41574-020-0341-0 URL |
34. |
Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284, 143-147.
doi: 10.1126/science.284.5411.143 URL |
35. |
Takayanagi, H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009, 5, 667-676.
doi: 10.1038/nrrheum.2009.217 URL |
36. |
Feng, X.; Teitelbaum, S. L. Osteoclasts: new insights. Bone Res. 2013, 1, 11-26.
doi: 10.4248/BR201301003 URL |
37. |
Al-Bari, A. A.; Al Mamun, A. Current advances in regulation of bone homeostasis. FASEB Bioadv. 2020, 2, 668-679.
doi: 10.1096/fba.2020-00058 URL |
38. | Wu, J.; Zhang, W.; Ran, Q.; Xiang, Y.; Zhong, J. F.; Li, S. C.; Li, Z. The differentiation balance of bone marrow mesenchymal stem cells is crucial to hematopoiesis. Stem Cells Int. 2018, 2018, 1540148. |
39. |
Chen, G.; Zhuo, Y.; Tao, B.; Liu, Q.; Shang, W.; Li, Y.; Wang, Y.; Li, Y.; Zhang, L.; Fang, Y.; Zhang, X.; Fang, Z.; Yu, Y. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs. Stem Cell Res Ther. 2020, 11, 487.
doi: 10.1186/s13287-020-02004-y URL |
40. |
Du, G.; Cheng, X.; Zhang, Z.; Han, L.; Wu, K.; Li, Y.; Lin, X. TGF-beta induced key genes of osteogenic and adipogenic differentiation in human mesenchymal stem cells and miRNA-mRNA regulatory networks. Front Genet. 2021, 12, 759596.
doi: 10.3389/fgene.2021.759596 URL |
41. |
Meyer, M. B.; Benkusky, N. A.; Sen, B.; Rubin, J.; Pike, J. W. Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J Biol Chem. 2016, 291, 17829-17847.
doi: 10.1074/jbc.M116.736538 URL |
42. |
Robert, A. W.; Marcon, B. H.; Dallagiovanna, B.; Shigunov, P. Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: a comparative transcriptome approach. Front Cell Dev Biol. 2020, 8, 561.
doi: 10.3389/fcell.2020.00561 URL |
43. |
Kolf, C. M.; Cho, E.; Tuan, R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007, 9, 204.
doi: 10.1186/ar2116 URL |
44. | Yang, X.; Yang, J.; Lei, P.; Wen, T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany N Y). 2019, 11, 8777-8791. |
45. |
Qiu, M.; Zhai, S.; Fu, Q.; Liu, D. Bone marrow mesenchymal stem cells-derived exosomal microRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum Gene Ther. 2021, 32, 717-729.
doi: 10.1089/hum.2020.005 URL |
46. |
Huang, B.; Su, Y.; Shen, E.; Song, M.; Liu, D.; Qi, H. Extracellular vesicles from GPNMB-modified bone marrow mesenchymal stem cells attenuate bone loss in an ovariectomized rat model. Life Sci. 2021, 272, 119208.
doi: 10.1016/j.lfs.2021.119208 URL |
47. | Hu, Y.; Li, X.; Zhang, Q.; Gu, Z.; Luo, Y.; Guo, J.; Wang, X.; Jing, Y.; Chen, X.; Su, J. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater. 2021, 6, 2905-2913. |
48. | Wang, X.; Li, X.; Li, J.; Zhai, L.; Liu, D.; Abdurahman, A.; Zhang, Y.; Yokota, H.; Zhang, P. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells. FASEB J. 2021, 35, e21150. |
49. | Bond, J.; Adams, S.; Richards, S.; Vora, A.; Mitchell, C.; Goulden, N. Polymorphism in the PAI-1 (SERPINE1) gene and the risk of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011, 118, 2632-2633. |
50. |
Li, L.; Wang, Y.; Yu, X.; Bao, Y.; An, L.; Wei, X.; Yu, W.; Liu, B.; Li, J.; Yang, J.; Xia, Y.; Liu, G.; Cao, F.; Zhang, X.; Zhao, D. Bone marrow mesenchymal stem cell-derived exosomes promote plasminogen activator inhibitor 1 expression in vascular cells in the local microenvironment during rabbit osteonecrosis of the femoral head. Stem Cell Res Ther. 2020, 11, 480.
doi: 10.1186/s13287-020-01991-2 URL |
51. |
Liao, W.; Ning, Y.; Xu, H. J.; Zou, W. Z.; Hu, J.; Liu, X. Z.; Yang, Y.; Li, Z. H. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond). 2019, 133, 1955-1975.
doi: 10.1042/CS20181064 URL |
52. |
Kuang, M. J.; Huang, Y.; Zhao, X. G.; Zhang, R.; Ma, J. X.; Wang, D. C.; Ma, X. L. Exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. Int J Biol Sci. 2019, 15, 1861-1871.
doi: 10.7150/ijbs.32262 URL |
53. |
Tao, S. C.; Yuan, T.; Zhang, Y. L.; Yin, W. J.; Guo, S. C.; Zhang, C. Q. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017, 7, 180-195.
doi: 10.7150/thno.17133 URL |
54. |
Tofiño-Vian, M.; Guillén, M. I.; Pérez Del Caz, M. D.; Silvestre, A.; Alcaraz, M. J. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cell Physiol Biochem. 2018, 47, 11-25.
doi: 10.1159/000489739 URL |
55. |
Wu, J.; Kuang, L.; Chen, C.; Yang, J.; Zeng, W. N.; Li, T.; Chen, H.; Huang, S.; Fu, Z.; Li, J.; Liu, R.; Ni, Z.; Chen, L.; Yang, L. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 2019, 206, 87-100.
doi: 10.1016/j.biomaterials.2019.03.022 URL |
56. |
Wang, Y.; Chu, Y.; Li, K.; Zhang, G.; Guo, Z.; Wu, X.; Qiu, C.; Li, Y.; Wan, X.; Sui, J.; Zhang, D.; Xiang, H.; Chen, B. Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression. Front Cell Dev Biol. 2020, 8, 353.
doi: 10.3389/fcell.2020.00353 URL |
57. | Vallabhaneni, K. C.; Hassler, M. Y.; Abraham, A.; Whitt, J.; Mo, Y. Y.; Atfi, A.; Pochampally, R. Mesenchymal stem/stromal cells under stress increase osteosarcoma migration and apoptosis resistance via extracellular vesicle mediated communication. PLoS One. 2016, 11, e0166027. |
58. |
Li, F.; Chen, X.; Shang, C.; Ying, Q.; Zhou, X.; Zhu, R.; Lu, H.; Hao, X.; Dong, Q.; Jiang, Z. Bone marrow mesenchymal stem cells-derived extracellular vesicles promote proliferation, invasion and migration of osteosarcoma cells via the lncRNA MALAT1/miR-143/NRSN2/Wnt/β-catenin axis. Onco Targets Ther. 2021, 14, 737-749.
doi: 10.2147/OTT.S283459 URL |
59. |
Zhang, H.; Wang, J.; Ren, T.; Huang, Y.; Liang, X.; Yu, Y.; Wang, W.; Niu, J.; Guo, W. Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett. 2020, 490, 54-65.
doi: 10.1016/j.canlet.2020.07.008 URL |
60. |
Hu, H.; Wang, D.; Li, L.; Yin, H.; He, G.; Zhang, Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis. 2021, 12, 156.
doi: 10.1038/s41419-021-03430-3 URL |
61. |
Katakawa, Y.; Funaba, M.; Murakami, M. Smad8/9 is regulated through the BMP pathway. J Cell Biochem. 2016, 117, 1788-1796.
doi: 10.1002/jcb.25478 URL |
62. | Xu, T.; Luo, Y.; Wang, J.; Zhang, N.; Gu, C.; Li, L.; Qian, D.; Cai, W.; Fan, J.; Yin, G. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5. J Nanobiotechnology. 2020, 18, 47. |
63. | Liu, W.; Li, L.; Rong, Y.; Qian, D.; Chen, J.; Zhou, Z.; Luo, Y.; Jiang, D.; Cheng, L.; Zhao, S.; Kong, F.; Wang, J.; Zhou, Z.; Xu, T.; Gong, F.; Huang, Y.; Gu, C.; Zhao, X.; Bai, J.; Wang, F.; Zhao, W.; Zhang, L.; Li, X.; Yin, G.; Fan, J.; Cai, W. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020, 103, 196-212. |
64. |
Anam, A. K.; Insogna, K. Update on osteoporosis screening and management. Med Clin North Am. 2021, 105, 1117-1134.
doi: 10.1016/j.mcna.2021.05.016 URL |
65. |
He, X. Y.; Yu, H. M.; Lin, S.; Li, Y. Z. Advances in the application of mesenchymal stem cells, exosomes, biomimetic materials, and 3D printing in osteoporosis treatment. Cell Mol Biol Lett. 2021, 26, 47.
doi: 10.1186/s11658-021-00291-8 URL |
66. | Liu, P.; Wang, W.; Li, Z.; Li, Y.; Yu, X.; Tu, J.; Zhang, Z. Ferroptosis: a new regulatory mechanism in osteoporosis. Oxid Med Cell Longev. 2022, 2022, 2634431. |
67. |
Li, Y.; Jin, D.; Xie, W.; Wen, L.; Chen, W.; Xu, J.; Ding, J.; Ren, D.; Xiao, Z. Mesenchymal stem cells-derived exosomes: a possible therapeutic strategy for osteoporosis. Curr Stem Cell Res Ther. 2018, 13, 362-368.
doi: 10.2174/1574888X13666180403163456 URL |
68. |
An, Q.; Wu, D.; Ma, Y.; Zhou, B.; Liu, Q. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Int J Mol Med. 2015, 36, 1615-1622.
doi: 10.3892/ijmm.2015.2385 URL |
69. |
Wang, Z. X.; Luo, Z. W.; Li, F. X.; Cao, J.; Rao, S. S.; Liu, Y. W.; Wang, Y. Y.; Zhu, G. Q.; Gong, J. S.; Zou, J. T.; Wang, Q.; Tan, Y. J.; Zhang, Y.; Hu, Y.; Li, Y. Y.; Yin, H.; Wang, X. K.; He, Z. H.; Ren, L.; Liu, Z. Z.; Hu, X. K.; Yuan, L. Q.; Xu, R.; Chen, C. Y.; Xie, H. Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nat Commun. 2022, 13, 1453.
doi: 10.1038/s41467-022-29191-x URL |
70. |
Murali, V. P.; Holmes, C. A. Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy. Bone reports. 2021, 14, 101093.
doi: 10.1016/j.bonr.2021.101093 URL |
71. | Meng, F.; Xue, X.; Yin, Z.; Gao, F.; Wang, X.; Geng, Z. Research progress of exosomes in bone diseases: mechanism, diagnosis and therapy. Front Bioeng Biotechnol. 2022, 10, 866627. |
72. |
Peng, Y.; Wu, S.; Li, Y.; Crane, J. L. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020, 10, 426-436.
doi: 10.7150/thno.34126 URL |
73. |
Xie, H.; Cui, Z.; Wang, L.; Xia, Z.; Hu, Y.; Xian, L.; Li, C.; Xie, L.; Crane, J.; Wan, M.; Zhen, G.; Bian, Q.; Yu, B.; Chang, W.; Qiu, T.; Pickarski, M.; Duong, L. T.; Windle, J. J.; Luo, X.; Liao, E.; Cao, X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014, 20, 1270-1278.
doi: 10.1038/nm.3668 URL |
74. |
Zhang, Y.; Cao, X.; Li, P.; Fan, Y.; Zhang, L.; Ma, X.; Sun, R.; Liu, Y.; Li, W. microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci. 2021, 272, 119204.
doi: 10.1016/j.lfs.2021.119204 URL |
75. |
Yang, Z.; Liu, X.; Zhao, F.; Yao, M.; Lin, Z.; Yang, Z.; Liu, C.; Liu, Y.; Chen, X.; Du, C. Bioactive glass nanoparticles inhibit osteoclast differentiation and osteoporotic bone loss by activating lncRNA NRON expression in the extracellular vesicles derived from bone marrow mesenchymal stem cells. Biomaterials. 2022, 283, 121438.
doi: 10.1016/j.biomaterials.2022.121438 URL |
76. |
Lai, C. P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C.; Chen, J. W.; Tannous, B. A.; Breakefield, X. O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 2014, 8, 483-494.
doi: 10.1021/nn404945r URL |
77. |
Elsharkasy, O. M.; Nordin, J. Z.; Hagey, D. W.; de Jong, O. G.; Schiffelers, R. M.; Andaloussi, S. E.; Vader, P. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020, 159, 332-343.
doi: 10.1016/j.addr.2020.04.004 URL |
78. |
Luo, Z. W.; Li, F. X.; Liu, Y. W.; Rao, S. S.; Yin, H.; Huang, J.; Chen, C. Y.; Hu, Y.; Zhang, Y.; Tan, Y. J.; Yuan, L. Q.; Chen, T. H.; Liu, H. M.; Cao, J.; Liu, Z. Z.; Wang, Z. X.; Xie, H. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale. 2019, 11, 20884-20892.
doi: 10.1039/C9NR02791B URL |
79. | Cui, Y.; Guo, Y.; Kong, L.; Shi, J.; Liu, P.; Li, R.; Geng, Y.; Gao, W.; Zhang, Z.; Fu, D. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater. 2022, 10, 207-221. |
80. |
Petek, D.; Hannouche, D.; Suva, D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Rev. 2019, 4, 85-97.
doi: 10.1302/2058-5241.4.180036 URL |
81. | Baig, S. A.; Baig, M. N. Osteonecrosis of the femoral head: etiology, investigations, and management. Cureus. 2018, 10, e3171. |
82. |
Zhang, C.; Su, Y.; Ding, H.; Yin, J.; Zhu, Z.; Song, W. Mesenchymal stem cells-derived and siRNAs-encapsulated exosomes inhibit osteonecrosis of the femoral head. J Cell Mol Med. 2020, 24, 9605-9612.
doi: 10.1111/jcmm.15395 URL |
83. |
Guilak, F.; Nims, R. J.; Dicks, A.; Wu, C. L.; Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018, 71-72, 40-50.
doi: 10.1016/j.matbio.2018.05.008 URL |
84. |
Roos, E. M.; Arden, N. K. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol. 2016, 12, 92-101.
doi: 10.1038/nrrheum.2015.135 URL |
85. |
Mianehsaz, E.; Mirzaei, H. R.; Mahjoubin-Tehran, M.; Rezaee, A.; Sahebnasagh, R.; Pourhanifeh, M. H.; Mirzaei, H.; Hamblin, M. R. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther. 2019, 10, 340.
doi: 10.1186/s13287-019-1445-0 URL |
86. |
Zhu, Y.; Wang, Y.; Zhao, B.; Niu, X.; Hu, B.; Li, Q.; Zhang, J.; Ding, J.; Chen, Y.; Wang, Y. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther. 2017, 8, 64.
doi: 10.1186/s13287-017-0510-9 URL |
87. |
Sarhadi, V. K.; Daddali, R.; Seppänen-Kaijansinkko, R. Mesenchymal stem cells and extracellular vesicles in osteosarcoma pathogenesis and therapy. Int J Mol Sci. 2021, 22, 11035.
doi: 10.3390/ijms222011035 URL |
88. | Xu, X.; Qiu, B.; Yi, P.; Li, H. Overexpression of miR-206 in osteosarcoma and its associated molecular mechanisms as assessed through TCGA and GEO databases. Oncol Lett. 2020, 19, 1751-1758. |
89. |
Kempf-Bielack, B.; Bielack, S. S.; Jürgens, H.; Branscheid, D.; Berdel, W. E.; Exner, G. U.; Göbel, U.; Helmke, K.; Jundt, G.; Kabisch, H.; Kevric, M.; Klingebiel, T.; Kotz, R.; Maas, R.; Schwarz, R.; Semik, M.; Treuner, J.; Zoubek, A.; Winkler, K. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005, 23, 559-568.
doi: 10.1200/JCO.2005.04.063 URL |
90. | Zhao, W.; Qin, P.; Zhang, D.; Cui, X.; Gao, J.; Yu, Z.; Chai, Y.; Wang, J.; Li, J. Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging (Albany N Y). 2019, 11, 9581-9596. |
91. |
He, H.; Ding, M.; Li, T.; Zhao, W.; Zhang, L.; Yin, P.; Zhang, W. Bone mesenchymal stem cell-derived extracellular vesicles containing NORAD promote osteosarcoma by miR-30c-5p. Lab Invest. 2022. doi: 10.1038/s41374-021-00691-6.
doi: 10.1038/s41374-021-00691-6 URL |
92. |
Einhorn, T. A.; Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015, 11, 45-54.
doi: 10.1038/nrrheum.2014.164 URL |
93. | Komatsu, D. E.; Warden, S. J. The control of fracture healing and its therapeutic targeting: improving upon nature. J Cell Biochem. 2010, 109, 302-311. |
94. |
Buettmann, E. G.; McKenzie, J. A.; Migotsky, N.; Sykes, D. A.; Hu, P.; Yoneda, S.; Silva, M. J. VEGFA from early osteoblast lineage cells (Osterix+) is required in mice for fracture healing. J Bone Miner Res. 2019, 34, 1690-1706.
doi: 10.1002/jbmr.3755 URL |
95. | Sun, Y.; Xiong, Y.; Yan, C.; Chen, L.; Chen, D.; Mi, B.; Liu, G. Downregulation of microRNA-16-5p accelerates fracture healing by promoting proliferation and inhibiting apoptosis of osteoblasts in patients with traumatic brain injury. Am J Transl Res. 2019, 11, 4746-4760. |
96. | Lin, Z.; Xiong, Y.; Meng, W.; Hu, Y.; Chen, L.; Chen, L.; Xue, H.; Panayi, A. C.; Zhou, W.; Sun, Y.; Cao, F.; Liu, G.; Hu, L.; Yan, C.; Xie, X.; Lin, C.; Cai, K.; Feng, Q.; Mi, B.; Liu, G. Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant. Bioact Mater. 2022, 13, 300-311. |
97. | Tan, S. H. S.; Wong, J. R. Y.; Sim, S. J. Y.; Tjio, C. K. E.; Wong, K. L.; Chew, J. R. J.; Hui, J. H. P.; Toh, W. S. Mesenchymal stem cell exosomes in bone regenerative strategies-a systematic review of preclinical studies. Mater Today Bio. 2020, 7, 100067. |
98. |
Wang, X.; Thomsen, P. Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration. Basic Clin Pharmacol Toxicol. 2021, 128, 18-36.
doi: 10.1111/bcpt.13478 URL |
99. | Zhai, M.; Zhu, Y.; Yang, M.; Mao, C. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv Sci (Weinh). 2020, 7, 2001334. |
100. | Zhou, X.; Miao, Y.; Wang, Y.; He, S.; Guo, L.; Mao, J.; Chen, M.; Yang, Y.; Zhang, X.; Gan, Y. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles. 2022, 11, e12198. |
101. |
Alqurashi, H.; Ortega Asencio, I.; Lambert, D. W. The emerging potential of extracellular vesicles in cell-free tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2021, 27, 530-538.
doi: 10.1089/ten.teb.2020.0222 URL |
102. |
Xie, H.; Wang, Z.; Zhang, L.; Lei, Q.; Zhao, A.; Wang, H.; Li, Q.; Cao, Y.; Jie Zhang, W.; Chen, Z. Extracellular vesicle-functionalized decalcified bone matrix scaffolds with enhanced pro-angiogenic and pro-bone regeneration activities. Sci Rep. 2017, 7, 45622.
doi: 10.1038/srep45622 URL |
103. |
Li, W.; Liu, Y.; Zhang, P.; Tang, Y.; Zhou, M.; Jiang, W.; Zhang, X.; Wu, G.; Zhou, Y. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces. 2018, 10, 5240-5254.
doi: 10.1021/acsami.7b17620 URL |
104. |
Zhang, J.; Liu, X.; Li, H.; Chen, C.; Hu, B.; Niu, X.; Li, Q.; Zhao, B.; Xie, Z.; Wang, Y. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016, 7, 136.
doi: 10.1186/s13287-016-0391-3 URL |
105. |
Qi, X.; Zhang, J.; Yuan, H.; Xu, Z.; Li, Q.; Niu, X.; Hu, B.; Wang, Y.; Li, X. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016, 12, 836-849.
doi: 10.7150/ijbs.14809 URL |
106. |
Wang, L.; Wang, J.; Zhou, X.; Sun, J.; Zhu, B.; Duan, C.; Chen, P.; Guo, X.; Zhang, T.; Guo, H. A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Front Bioeng Biotechnol. 2020, 8, 564731.
doi: 10.3389/fbioe.2020.564731 URL |
107. |
Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A.; Caputi, S.; Fontana, A.; Mazzon, E.; Trubiani, O. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther. 2018, 9, 104.
doi: 10.1186/s13287-018-0850-0 URL |
108. |
Yang, S.; Zhu, B.; Yin, P.; Zhao, L.; Wang, Y.; Fu, Z.; Dang, R.; Xu, J.; Zhang, J.; Wen, N. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng. 2020, 6, 1590-1602.
doi: 10.1021/acsbiomaterials.9b01363 URL |
[1] | Ricardo Donate, Maryam Tamaddon, Viviana Ribeiro, Mario Monzón, J. Miguel Oliveira, Chaozong Liu. Translation through collaboration: practice applied in BAMOS project in in vivo testing of innovative osteochondral scaffolds [J]. Biomaterials Translational, 2022, 3(2): 102-104. |
[2] | Maryam Tamaddon, Helena Gilja, Ling Wang, J. Miguel Oliveira, Xiaodan Sun, Rongwei Tan, Chaozong Liu. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic [J]. Biomaterials Translational, 2020, 1(1): 3-17. |
[3] | Xing Yang, Yuanyuan Li, Xujie Liu, Wei He, Qianli Huang, Qingling Feng. Nanoparticles and their effects on differentiation of mesenchymal stem cells [J]. Biomaterials Translational, 2020, 1(1): 58-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||