Home

Biomaterials Translational ›› 2022, Vol. 3 ›› Issue (3): 175-187.doi: 10.12336/biomatertransl.2022.03.002

• REVIEW • Previous Articles     Next Articles

Mesenchymal stem cell–derived extracellular vesicles: a possible therapeutic strategy for orthopaedic diseases: a narrative review

Zhao–Lin Zeng2,3, Hui Xie1,*()   

  1. 1 Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
    2 Department of Metabolism and Endocrinology, The First Affliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
    3 Department of Clinical Medicine, The First Affliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
  • Received:2022-04-28 Revised:2022-05-19 Accepted:2022-08-02 Online:2022-09-28 Published:2022-09-28
  • Contact: Hui Xie E-mail:huixie@csu.edu.cn
  • About author:Hui Xie, huixie@csu.edu.cn.

Abstract:

Accumulating evidence suggests that the therapeutic role of mesenchymal stem cells (MSCs) in bone diseases is closely related to paracrine–generated extracellular vesicles (EVs). MSC–derived EVs (MSC–EVs) carry proteins, nucleic acids, and lipids to the extracellular space and affect the bone microenvironment. They have similar biological functions to MSCs, such as the ability to repair organ and tissue damage. In addition, MSC–EVs also have the advantages of long half–life, low immunogenicity, attractive stability, ability to pass through the blood–brain barrier, and demonstrate excellent performance with potential practical applications in bone diseases. In this review, we summarise the current applications and mechanisms of MSC–EVs in osteoporosis, osteoarthritis, bone tumours, osteonecrosis of the femoral head, and fractures, as well as the development of MSC–EVs combined with materials science in the field of orthopaedics. Additionally, we explore the critical challenges involved in the clinical application of MSC–EVs in orthopaedic diseases.

Key words: exosomes, extracellular vesicles, mesenchymal stem cells, orthopaedic diseases, regenerative medicine