Biomaterials Translational ›› 2023, Vol. 4 ›› Issue (1): 27-40.doi: 10.12336/biomatertransl.2023.01.005
• RESEARCH ARTICLE • Previous Articles Next Articles
Gen Wang#, Zhangqin Yuan#, Li Yu#, Yingkang Yu, Pinghui Zhou, Genglei Chu, Huan Wang, Qianping Guo, Caihong Zhu, Fengxuan Han, Song Chen*(), Bin Li*()
Received:
2022-11-24
Revised:
2023-01-14
Accepted:
2023-02-17
Online:
2023-03-28
Published:
2023-03-28
Contact:
* Bin Li, About author:
Bin Li, binli@suda.edu.cn; Song Chen, chensong@suda.edu.cn.Wang, G.; Yuan, Z.; Yu, L.; Yu, Y.; Zhou, P.; Chu, G.; Wang, H.; Guo, Q.; Zhu, C.; Han, F.; Chen, S.; Li, B. Mechanically conditioned cell sheets cultured on thermoresponsive surfaces promote bone regeneration. Biomater Transl. 2023, 4(1), 27-40.
Figure 1. Schematic illustration of the preparation of cell sheets under mechanical stimulation and its implantation in a mouse calvarial defect model. Cells were cultured on the PDMS–g–PNIPAAm and then fixed in a loaded cell culture apparatus and subjected to cyclic mechanical stimulation to promote cell sheet formation. The harvested cell sheet was implanted into a calvarial defect of mouse for enhanced bone repair. PDMS–g–PNIPAAm: grafting polymerization of poly(N–isopropyl acrylamide) to poly(dimethylsiloxane).
Gene | Forward (5′–3′) | Reverse (5′–3′) |
---|---|---|
Col I | CCT AGC AAC ATG CCA ATC TTT ACA | TTG TCC ACG CGG TCC TCT |
Runx2 | CCA ACC CAC GAA TGC ACT ATC | TAG TGA GTG GTG GCG GAC ATA C |
OPN | TGA GAC TGG CAG TGG TTT GC | CCA CTT TCA CCG GGA GAC A |
β–Actin | TTC AAC ACC CCA GCC ATG T | GTG GTA CGA CCA GAG GCA TAC A |
Table 1. Primers sequences used for reverse transcription quantitative polymerase chain reaction
Gene | Forward (5′–3′) | Reverse (5′–3′) |
---|---|---|
Col I | CCT AGC AAC ATG CCA ATC TTT ACA | TTG TCC ACG CGG TCC TCT |
Runx2 | CCA ACC CAC GAA TGC ACT ATC | TAG TGA GTG GTG GCG GAC ATA C |
OPN | TGA GAC TGG CAG TGG TTT GC | CCA CTT TCA CCG GGA GAC A |
β–Actin | TTC AAC ACC CCA GCC ATG T | GTG GTA CGA CCA GAG GCA TAC A |
Antibody | Species | Concentration | Catalog number | RRID number | Source |
---|---|---|---|---|---|
Col I | Mouse | 1:1000 | ab6308 | AB_305411 | Abcam, Cambridge, UK |
Runx2 | Rabbit | 1:1000 | ab76956 | AB_156595 | Abcam, Cambridge, UK |
OPN | Rabbit | 1:1000 | ab63856 | AB_1524127 | Abcam, Cambridge, UK |
β–Actin | Mouse | 1:1000 | ab8226 | AB_306371 | Abcam, Cambridge, UK |
Goat anti–rabbit horseradish peroxidase secondary antibody | Goat | 1:10000 | 926–80011 | AB_2721264 | LI–COR, Lincoln, NE, USA |
Goat anti–mouse horseradish peroxidase secondary antibody | Goat | 1:10000 | 926–80010 | AB_2721263 | LI–COR, Lincoln, NE, USA |
Table 2. Antibodies for western blot analyses
Antibody | Species | Concentration | Catalog number | RRID number | Source |
---|---|---|---|---|---|
Col I | Mouse | 1:1000 | ab6308 | AB_305411 | Abcam, Cambridge, UK |
Runx2 | Rabbit | 1:1000 | ab76956 | AB_156595 | Abcam, Cambridge, UK |
OPN | Rabbit | 1:1000 | ab63856 | AB_1524127 | Abcam, Cambridge, UK |
β–Actin | Mouse | 1:1000 | ab8226 | AB_306371 | Abcam, Cambridge, UK |
Goat anti–rabbit horseradish peroxidase secondary antibody | Goat | 1:10000 | 926–80011 | AB_2721264 | LI–COR, Lincoln, NE, USA |
Goat anti–mouse horseradish peroxidase secondary antibody | Goat | 1:10000 | 926–80010 | AB_2721263 | LI–COR, Lincoln, NE, USA |
Figure 2. Microstructure of non–grafted PDMS substrate and PDMS–g–PNIPAAm substrate with different grafting yields. (A–D) SEM images (A), SEM images of the cross section (B), AFM images (C), and ATR–FTIR spectra (D) of the surfaces of PDMS, gPDMS–L, gPDMS–M and gPDMS–H substrates (n ≥ 3). Scale bars: 25 μm (A), 10 μm (B), 2.5 μm (C). gPDMS–L, gPDMS–M and gPDMS–H indicate PDMS–g–PNIPAAm substrate with low, medium and high grafting yield, respectively. AFM: atomic force microscopy; ATR–FTIR: attenuated total reflectance Fourier transform infrared spectroscopy; au: arbitrary unit; PDMS: poly(N–isopropyl acrylamide); PDMS–g–PNIPAAm: grafting polymerization of poly(N–isopropyl acrylamide) to poly(dimethylsiloxane); SEM: scanning electron microscope.
Figure 3. Temperature sensitivity of PDMS–g–PNIPAAm substrates. (A, B) The images of water contact angle (A) and water contact angle measured (B) on PDMS, gPDMS–L, gPDMS–M and gPDMS–H substrates with different grafting yields at 37°C and 4°C. Data are expressed as the mean ± SD (n ≥ 3). (C) Detachment of cell sheets from the PDMS, gPDMS–L, gPDMS–M and gPDMS–H substrates after incubating at 4°C for 10, 14, 18 and 30 minutes. Blue dotted lines indicate the dividing line between the adhesion area and the detachment area of the cell sheet. Blue arrows indicate the direction of the detachment of the cell sheet. Scale bar: 1 mm. gPDMS–L, gPDMS–M and gPDMS–H indicate PDMS–g–PNIPAAm substrate with low, medium and high grafting yield, respectively. PDMS: poly(N–isopropyl acrylamide); PDMS–g–PNIPAAm: grafting polymerization of poly(N–isopropyl acrylamide) to poly(dimethylsiloxane).
Figure 4. Loaded culture of cell sheets. (A) Cell proliferation under static or loaded conditions. Data are expressed as the mean ± SD (n = 3). *P < 0.05 (Student’s t–test). (B) F–actin staining (green) of MC3T3–E1 cells under static or loaded conditions. Scale bars: 200 μm. OD: optical density.
Figure 5. Cell sheets detachment after mechanical stimulation (n = 3). (A) Detachment of cell sheets from the PDMS–g–PNIPAAm surface of high grafting yield after incubation at 4°C for 10, 14, 18 and 45 minutes. Blue arrows indicate the direction of the detachment of the cell sheet. (B) F–actin staining (green) of cell sheets before and after detachment. (C) Live/dead staining of cell sheets after detachment. The cell sheets were cultured under loaded condition to confluence. Green dotted lines indicate the dividing line between the cell sheet and the blank area. Scale bars: 1 mm (A, C), 200 μm (B). PDMS–g–PNIPAAm: grafting polymerization of poly(N–isopropyl acrylamide) to poly(dimethylsiloxane).
Figure 6. Thickness of cell sheets and extracellular matrix production under static and loaded conditions. (A, B) Cytoskeleton staining images (A) and hematoxylin and eosin staining images (B) of cell sheet sections. (C) Statistical analysis of the cell sheet thickness. (D–G) Scanning electron microscope images (D), the total protein contents (E), the total DNA contents (F) and the content ratio of protein to DNA of cell sheets (G) after culturing for 7 days. Scale bars: 100 μm (A), 5 mm (B upper), 50 μm (B lower), 25 μm (C). Data are expressed as the mean ± SD (n = 3). *P < 0.05 (Student’s t-test).
Figure 7. Effect of mechanical stimulation on the osteogenesis of MC3T3–E1 cells. (A–C) Gene expression of type I collagen (Col I), Runt–related transcription factor 2 (Runx2) and osteopontin (OPN) using β–actin as housekeeping gene and the static group as control. Data are expressed as the mean ± SD (n = 3). *P < 0.05 (Student’s t–test). (D) Western blot analysis of Col I, Runx2 and OPN protein expression.
Figure 8. Bone formation of cell sheets in the calvarial defects of mice at 4 and 8 weeks, respectively. (A) Three–dimensional reconstruction images. (B) BV/TV at 4 and 8 weeks. Data are expressed as the mean ± SD (n = 4). *P < 0.05 (one–way analysis of variance followed by Tukey’s post hoc analysis). (C) Overview and magnified images of the sections stained with hematoxylin and eosin. Scale bars: 1 mm, 100 μm (enlarged images). BV/TV: bone volume/tissue volume.
Additional Figure 1. Effect of NIPAAm monomer concentration, polymerization temperature, polymerization time and distance from UV source on grafting yield of PDMS–g–PNIPAAm surface. Weight ratio of nitrogen atoms signify PNIPAAm grafting yield. NIPAAm: poly(N–isopropyl acrylamide); UV: ultraviolet.
Additional Figure 2. Energy dispersion spectrum of PDMS, gPDMS–L, gPDMS–M and gPDMS–H substrates. gPDMS–L, gPDMS–M and gPDMS–H indicate PDMS–g–PNIPAAm substrate with low, medium and high grafting yield, respectively. PDMS: poly(dimethylsiloxane).
Additional Figure 3. Masson staining of cell sheet cross–sections and thickness distribution of cell sheet obtained under static or loaded conditions. Scale bars: 200 μm (upper), 100 μm (lower).
1 |
Green, J. J.; Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature. 2016, 540, 386-394.
doi: 10.1038/nature21005 |
2 | Triffitt, J. T.; Wang, Q. Application of stem cells in translational medicine. Biomater Transl. 2021, 2, 285-286. |
3 | Steijvers, E.; Ghei, A.; Xia, Z. Manufacturing artificial bone allografts: a perspective. Biomater Transl. 2022, 3, 65-80. |
4 |
Han, F.; Hu, Y.; Li, J.; Gong, J.; Guo, Q.; Zhu, C.; Zhu, X.; Yang, H.; Li, B. In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair. Mater Sci Eng C Mater Biol Appl. 2019, 95, 1-10.
doi: 10.1016/j.msec.2018.10.041 URL |
5 |
Burg, K. J.; Porter, S.; Kellam, J. F. Biomaterial developments for bone tissue engineering. Biomaterials. 2000, 21, 2347-2359.
doi: 10.1016/S0142-9612(00)00102-2 URL |
6 |
Zhang, K.; Wang, S.; Zhou, C.; Cheng, L.; Gao, X.; Xie, X.; Sun, J.; Wang, H.; Weir, M. D.; Reynolds, M. A.; Zhang, N.; Bai, Y.; Xu, H. H. K. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018, 6, 31.
doi: 10.1038/s41413-018-0032-9 |
7 |
Xu, Y.; Peng, J.; Richards, G.; Lu, S.; Eglin, D. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. J Orthop Translat. 2019, 18, 128-141.
doi: 10.1016/j.jot.2019.05.003 URL |
8 |
Rafat, M.; Li, F.; Fagerholm, P.; Lagali, N. S.; Watsky, M. A.; Munger, R.; Matsuura, T.; Griffith, M. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008, 29, 3960-3972.
doi: 10.1016/j.biomaterials.2008.06.017 URL |
9 |
Kumbar, S. G.; Nukavarapu, S. P.; James, R.; Nair, L. S.; Laurencin, C. T. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008, 29, 4100-4107.
doi: 10.1016/j.biomaterials.2008.06.028 URL |
10 |
Chouhan, D.; Mandal, B. B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 2020, 103, 24-51.
doi: 10.1016/j.actbio.2019.11.050 URL |
11 |
Xuan, H.; Hu, H.; Geng, C.; Song, J.; Shen, Y.; Lei, D.; Guan, Q.; Zhao, S.; You, Z. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration. Acta Biomater. 2020, 105, 97-110.
doi: 10.1016/j.actbio.2020.01.015 URL |
12 |
Castilho, M.; Mouser, V.; Chen, M.; Malda, J.; Ito, K. Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration. Acta Biomater. 2019, 95, 297-306.
doi: 10.1016/j.actbio.2019.06.030 URL |
13 | Bhatia, S. N.; Underhill, G. H.; Zaret, K. S.; Fox, I. J. Cell and tissue engineering for liver disease. Sci Transl Med. 2014, 6, 245sr242. |
14 |
Sabetkish, S.; Kajbafzadeh, A. M.; Sabetkish, N.; Khorramirouz, R.; Akbarzadeh, A.; Seyedian, S. L.; Pasalar, P.; Orangian, S.; Beigi, R. S.; Aryan, Z.; Akbari, H.; Tavangar, S. M. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A. 2015, 103, 1498-1508.
doi: 10.1002/jbm.a.35291 URL |
15 |
Shimizu, T.; Yamato, M.; Kikuchi, A.; Okano, T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003, 24, 2309-2316.
doi: 10.1016/S0142-9612(03)00110-8 URL |
16 |
Qazi, T. H.; Mooney, D. J.; Pumberger, M.; Geissler, S.; Duda, G. N. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials. 2015, 53, 502-521.
doi: 10.1016/j.biomaterials.2015.02.110 URL |
17 |
Pedde, R. D.; Mirani, B.; Navaei, A.; Styan, T.; Wong, S.; Mehrali, M.; Thakur, A.; Mohtaram, N. K.; Bayati, A.; Dolatshahi-Pirouz, A.; Nikkhah, M.; Willerth, S. M.; Akbari, M. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater. 2017, 29, 1606061.
doi: 10.1002/adma.v29.19 URL |
18 |
Yang, J.; Yamato, M.; Kohno, C.; Nishimoto, A.; Sekine, H.; Fukai, F.; Okano, T. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials. 2005, 26, 6415-6422.
doi: 10.1016/j.biomaterials.2005.04.061 URL |
19 | Yamato, M.; Okano, T. Cell sheet engineering. Mater Today. 2004, 7, 42-47. |
20 | Xu, X.; Song, J. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds. Biomater Transl. 2020, 1, 33-45. |
21 |
McMurray, R. J.; Gadegaard, N.; Tsimbouri, P. M.; Burgess, K. V.; McNamara, L. E.; Tare, R.; Murawski, K.; Kingham, E.; Oreffo, R. O.; Dalby, M. J. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011, 10, 637-644.
doi: 10.1038/nmat3058 |
22 |
Kelm, J. M.; Fussenegger, M. Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev. 2010, 62, 753-764.
doi: 10.1016/j.addr.2010.02.003 URL |
23 |
Badylak, S. F.; Gilbert, T. W. Immune response to biologic scaffold materials. Semin Immunol. 2008, 20, 109-116.
doi: 10.1016/j.smim.2007.11.003 URL |
24 |
Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin Immunol. 2008, 20, 86-100.
doi: 10.1016/j.smim.2007.11.004 URL |
25 |
Akizuki, T.; Oda, S.; Komaki, M.; Tsuchioka, H.; Kawakatsu, N.; Kikuchi, A.; Yamato, M.; Okano, T.; Ishikawa, I. Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res. 2005, 40, 245-251.
doi: 10.1111/jre.2005.40.issue-3 URL |
26 | L’Heureux, N.; Dusserre, N.; Konig, G.; Victor, B.; Keire, P.; Wight, T. N.; Chronos, N. A.; Kyles, A. E.; Gregory, C. R.; Hoyt, G.; Robbins, R. C.; McAllister, T. N. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006, 12, 361-365. |
27 |
Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Maeda, N.; Watanabe, H.; Yamamoto, K.; Nagai, S.; Kikuchi, A.; Tano, Y.; Okano, T. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation. 2004, 77, 379-385.
doi: 10.1097/01.TP.0000110320.45678.30 URL |
28 |
Matsuura, K.; Masuda, S.; Haraguchi, Y.; Yasuda, N.; Shimizu, T.; Hagiwara, N.; Zandstra, P. W.; Okano, T. Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials. 2011, 32, 7355-7362.
doi: 10.1016/j.biomaterials.2011.05.042 URL |
29 |
Doberenz, F.; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. Thermoresponsive polymers and their biomedical application in tissue engineering - a review. J Mater Chem B. 2020, 8, 607-628.
doi: 10.1039/C9TB02052G URL |
30 |
Yamato, M.; Utsumi, M.; Kushida, A.; Konno, C.; Kikuchi, A.; Okano, T. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 2001, 7, 473-480.
doi: 10.1089/10763270152436517 URL |
31 |
Lin, J. B.; Isenberg, B. C.; Shen, Y.; Schorsch, K.; Sazonova, O. V.; Wong, J. Y. Thermo-responsive poly(N-isopropylacrylamide) grafted onto microtextured poly(dimethylsiloxane) for aligned cell sheet engineering. Colloids Surf B Biointerfaces. 2012, 99, 108-115.
doi: 10.1016/j.colsurfb.2011.10.040 URL |
32 |
Yu, Q.; Zhang, Y.; Chen, H.; Zhou, F.; Wu, Z.; Huang, H.; Brash, J. L. Protein adsorption and cell adhesion/detachment behavior on dual-responsive silicon surfaces modified with poly(N-isopropylacrylamide)-block-polystyrene copolymer. Langmuir. 2010, 26, 8582-8588.
doi: 10.1021/la904663m URL |
33 |
Kushida, A.; Yamato, M.; Konno, C.; Kikuchi, A.; Sakurai, Y.; Okano, T. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res. 1999, 45, 355-362.
doi: 10.1002/(ISSN)1097-4636 URL |
34 |
Hamdi, H.; Furuta, A.; Bellamy, V.; Bel, A.; Puymirat, E.; Peyrard, S.; Agbulut, O.; Menasché, P. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg. 2009, 87, 1196-1203.
doi: 10.1016/j.athoracsur.2008.12.074 URL |
35 |
Shimizu, T.; Sekine, H.; Yang, J.; Isoi, Y.; Yamato, M.; Kikuchi, A.; Kobayashi, E.; Okano, T. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 2006, 20, 708-710.
doi: 10.1096/fsb2.v20.6 URL |
36 |
Liu, Y.; Wang, L.; Li, S.; Zhang, T.; Chen, C.; Hu, J.; Sun, D.; Lu, H. Mechanical stimulation improves rotator cuff tendon-bone healing via activating IL-4/JAK/STAT signaling pathway mediated macrophage M2 polarization. J Orthop Translat. 2022, 37, 78-88.
doi: 10.1016/j.jot.2022.08.008 URL |
37 |
Lin, C. Y.; Song, X.; Seaman, K.; You, L. Microfluidic co-culture platforms for studying osteocyte regulation of other cell types under dynamic mechanical stimulation. Curr Osteoporos Rep. 2022, 20, 478-492.
doi: 10.1007/s11914-022-00748-5 |
38 |
Zhang, J.; Hao, X.; Chi, R.; Qi, J.; Xu, T. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics. J Cell Physiol. 2021, 236, 7504-7515.
doi: 10.1002/jcp.v236.11 URL |
39 |
Lee, H. P.; Gu, L.; Mooney, D. J.; Levenston, M. E.; Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat Mater. 2017, 16, 1243-1251.
doi: 10.1038/nmat4993 URL |
40 |
Wang, T.; Chen, P.; Chen, L.; Zhou, Y.; Wang, A.; Zheng, Q.; Mitchell, C. A.; Leys, T.; Tuan, R. S.; Zheng, M. H. Reduction of mechanical loading in tendons induces heterotopic ossification and activation of the β-catenin signaling pathway. J Orthop Translat. 2021, 29, 42-50.
doi: 10.1016/j.jot.2021.03.004 URL |
41 |
Guilak, F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol. 2011, 25, 815-823.
doi: 10.1016/j.berh.2011.11.013 URL |
42 |
Ni, R.; Guo, X. E.; Yan, C.; Wen, C. Hemodynamic stress shapes subchondral bone in osteoarthritis: An emerging hypothesis. J Orthop Translat. 2022, 32, 85-90.
doi: 10.1016/j.jot.2021.11.007 URL |
43 |
Gauvin, R.; Parenteau-Bareil, R.; Larouche, D.; Marcoux, H.; Bisson, F.; Bonnet, A.; Auger, F. A.; Bolduc, S.; Germain, L. Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding. Acta Biomater. 2011, 7, 3294-3301.
doi: 10.1016/j.actbio.2011.05.034 URL |
44 |
Dai, Z. Q.; Wang, R.; Ling, S. K.; Wan, Y. M.; Li, Y. H. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 2007, 40, 671-684.
doi: 10.1111/cpr.2007.40.issue-5 URL |
45 |
Vandenburgh, H. H. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev Biol. 1982, 93, 438-443.
doi: 10.1016/0012-1606(82)90131-2 URL |
46 |
Vandenburgh, H. H.; Swasdison, S.; Karlisch, P. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 1991, 5, 2860-2867.
doi: 10.1096/fsb2.v5.13 URL |
47 |
Collinsworth, A. M.; Torgan, C. E.; Nagda, S. N.; Rajalingam, R. J.; Kraus, W. E.; Truskey, G. A. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch. Cell Tissue Res. 2000, 302, 243-251.
doi: 10.1007/s004410000224 URL |
48 |
Hu, B.; El Haj, A. J.; Dobson, J. Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci. 2013, 14, 19276-19293.
doi: 10.3390/ijms140919276 URL |
49 |
Lambert, C. A.; Colige, A. C.; Munaut, C.; Lapière, C. M.; Nusgens, B. V. Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol. 2001, 20, 397-408.
doi: 10.1016/S0945-053X(01)00156-1 URL |
50 |
Gilbert, T. W.; Stewart-Akers, A. M.; Sydeski, J.; Nguyen, T. D.; Badylak, S. F.; Woo, S. L. Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching. Tissue Eng. 2007, 13, 1313-1323.
doi: 10.1089/ten.2006.0318 URL |
51 |
Ducouret, C.; Petersohn, E.; Betz, N.; Le Moel, A. Fourier transform infrared analysis of heavy ion grafting of poly(vinylidene fluoride). Spectrochim Acta A Mol Biomol Spectrosc. 1995, 51, 567-572.
doi: 10.1016/0584-8539(94)00169-C URL |
52 | Ponomar, M.; Krasnyuk, E.; Butylskii, D.; Nikonenko, V.; Wang, Y.; Jiang, C.; Xu, T.; Pismenskaya, N. Sessile drop method: critical analysis and optimization for measuring the contact angle of an ion-exchange membrane surface. Membranes (Basel). 2022, 12, 765. |
53 |
Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. A. Surface-wetting characterization using contact-angle measurements. Nat Protoc. 2018, 13, 1521-1538.
doi: 10.1038/s41596-018-0003-z |
54 | Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675. |
55 |
Yu, L.; Cai, Y.; Wang, H.; Pan, L.; Li, J.; Chen, S.; Liu, Z.; Han, F.; Li, B. Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater. 2020, 112, 75-86.
doi: 10.1016/j.actbio.2020.05.041 URL |
56 |
Zhang, W.; Wang, H.; Yuan, Z.; Chu, G.; Sun, H.; Yu, Z.; Liang, H.; Liu, T.; Zhou, F.; Li, B. Moderate mechanical stimulation rescues degenerative annulus fibrosus by suppressing caveolin-1 mediated pro-inflammatory signaling pathway. Int J Biol Sci. 2021, 17, 1395-1412.
doi: 10.7150/ijbs.57774 URL |
57 |
Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25, 402-408.
doi: 10.1006/meth.2001.1262 URL |
58 | National Research Council. Guide for the Care and Use of Laboratory Animals, 8th edition. National Academies Press: Washington, DC, USA, 2011. |
59 |
Liu, L.; Sheardown, H. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials. 2005, 26, 233-244.
doi: 10.1016/j.biomaterials.2004.02.025 URL |
60 |
Huang, X.; Das, R.; Patel, A.; Nguyen, T. D. Physical stimulations for bone and cartilage regeneration. Regen Eng Transl Med. 2018, 4, 216-237.
doi: 10.1007/s40883-018-0064-0 |
61 |
Sugiura, S.; Imano, W.; Takagi, T.; Sakai, K.; Kanamori, T. Thermoresponsive protein adsorption of poly(N-isopropylacrylamide)-modified streptavidin on polydimethylsiloxane microchannel surfaces. Biosens Bioelectron. 2009, 24, 1135-1140.
doi: 10.1016/j.bios.2008.06.038 URL |
62 |
Rim, N. G.; Yih, A.; Hsi, P.; Wang, Y.; Zhang, Y.; Wong, J. Y. Micropatterned cell sheets as structural building blocks for biomimetic vascular patches. Biomaterials. 2018, 181, 126-139.
doi: 10.1016/j.biomaterials.2018.07.047 URL |
63 |
Kessler, D.; Dethlefsen, S.; Haase, I.; Plomann, M.; Hirche, F.; Krieg, T.; Eckes, B. Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem. 2001, 276, 36575-36585.
doi: 10.1074/jbc.M101602200 URL |
64 |
Zhang, W.; Chu, G.; Wang, H.; Chen, S.; Li, B.; Han, F. Effects of matrix stiffness on the differentiation of multipotent stem cells. Curr Stem Cell Res Ther. 2020, 15, 449-461.
doi: 10.2174/1574888X15666200408114632 URL |
65 |
Ma, D.; Chen, H.; Shi, D.; Li, Z.; Wang, J. Preparation and characterization of thermo-responsive PDMS surfaces grafted with poly(N-isopropylacrylamide) by benzophenone-initiated photopolymerization. J Colloid Interface Sci. 2009, 332, 85-90.
doi: 10.1016/j.jcis.2008.12.046 URL |
66 |
Shi, D.; Ma, D.; Dong, F.; Zong, C.; Liu, L.; Shen, D.; Yuan, W.; Tong, X.; Chen, H.; Wang, J. Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermoresponsive PDMS surfaces grafted with PNIPAAm. Biosci Rep. 2009, 30, 149-158.
doi: 10.1042/BSR20090026 URL |
67 |
Nagase, K.; Yamato, M.; Kanazawa, H.; Okano, T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials. 2018, 153, 27-48.
doi: 10.1016/j.biomaterials.2017.10.026 URL |
68 | Humphrey, J. D.; Dufresne, E. R.; Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014, 15, 802-812. |
69 |
Hao, J.; Zhang, Y.; Jing, D.; Shen, Y.; Tang, G.; Huang, S.; Zhao, Z. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater. 2015, 20, 1-9.
doi: 10.1016/j.actbio.2015.04.008 URL |
70 |
Kreutzer, J.; Viehrig, M.; Pölönen, R. P.; Zhao, F.; Ojala, M.; Aalto-Setälä, K.; Kallio, P. Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes. Biomech Model Mechanobiol. 2020, 19, 291-303.
doi: 10.1007/s10237-019-01211-8 |
71 |
Thompson, M. S.; Abercrombie, S. R.; Ott, C. E.; Bieler, F. H.; Duda, G. N.; Ventikos, Y. Quantification and significance of fluid shear stress field in biaxial cell stretching device. Biomech Model Mechanobiol. 2011, 10, 559-564.
doi: 10.1007/s10237-010-0255-1 URL |
72 | Wittkowske, C.; Reilly, G. C.; Lacroix, D.; Perrault, C. M. In vitro bone cell models: impact of fluid shear stress on bone formation. Front Bioeng Biotechnol. 2016, 4, 87. |
[1] | Yang Zhao, Qing Sun, Bo Huo. Focal adhesion regulates osteogenic differentiation of mesenchymal stem cells and osteoblasts [J]. Biomaterials Translational, 2021, 2(4): 312-322. |
[2] | Qingchuan Wang, Weidan Wang, Yanfang Li, Weirong Li, Lili Tan, Ke Yang. Biofunctional magnesium coating of implant materials by physical vapour deposition [J]. Biomaterials Translational, 2021, 2(3): 248-256. |
[3] | Kamolrat Metavarayuth, Esteban Villarreal, Hui Wang, Qian Wang. Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles [J]. Biomaterials Translational, 2021, 2(2): 165-173. |
[4] | Yunsong Shi, Ruijun He, Xiangyu Deng, Zengwu Shao, Davide Deganello, Chunze Yan, Zhidao Xia. Three-dimensional biofabrication of an aragonite-enriched self-hardening bone graft substitute and assessment of its osteogenicity in vitro and in vivo [J]. Biomaterials Translational, 2020, 1(1): 69-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||