1. |
Adamson, C.; Kaufmann, M.; Levine, D.; Millis, D. L.; Marcellin-Little, D. J. Assistive devices, orthotics, and prosthetics. Vet Clin North Am Small Anim Pract. 2005, 35, 1441-1451, ix.
doi: 10.1016/j.cvsm.2005.08.009
URL
|
2. |
Ontario Health (Quality). Osseointegrated prosthetic implants for people with lower-limb amputation: a health technology assessment. Ont Health Technol Assess Ser. 2019, 19, 1-126.
|
3. |
Roffman, C. E.; Buchanan, J.; Allison, G. T. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. J Physiother. 2014, 60, 224-231.
doi: 10.1016/j.jphys.2014.09.003
URL
|
4. |
Pirouzi, G.; Abu Osman, N. A.; Eshraghi, A.; Ali, S.; Gholizadeh, H.; Wan Abas, W. A. Review of the socket design and interface pressure measurement for transtibial prosthesis. ScientificWorldJournal. 2014, 2014, 849073.
|
5. |
Bhandari, P. S.; Jain, S. K. Long term effects of prostheses on stump in lower limb amputees: a critical analysis of 100 cases. Med J Armed Forces India. 1996, 52, 169-171.
doi: 10.1016/S0377-1237(17)30794-3
URL
|
6. |
Bowker, J. H.; Michael, J. W. Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles. Mosby Inc.: St. Louis. 1992.
|
7. |
National Health Service. Amputation. https://www.nhs.uk/conditions/amputation/. Accessed August 9, 2022.
|
8. |
Cole, G. L.; Millis, D. The effect of limb amputation on standing weight distribution in the remaining three limbs in dogs. Vet Comp Orthop Traumatol. 2017, 30, 59-61.
doi: 10.3415/VCOT-16-05-0075
URL
|
9. |
Tzortzis, S.; Tzifa, K.; Tikka, T.; Worrollo, S.; Williams, J.; Reid, A. P.; Proops, D. A ten-year review of soft tissue reactions around percutaneous titanium implants for auricular prosthesis. Laryngoscope. 2015, 125, 1934-1939.
doi: 10.1002/lary.25211
URL
|
10. |
Li, Y.; Felländer-Tsai, L. The bone anchored prostheses for amputees - historical development, current status, and future aspects. Biomaterials. 2021, 273, 120836.
doi: 10.1016/j.biomaterials.2021.120836
URL
|
11. |
Overmann, A. L.; Forsberg, J. A. The state of the art of osseointegration for limb prosthesis. Biomed Eng Lett. 2020, 10, 5-16.
doi: 10.1007/s13534-019-00133-9
URL
|
12. |
Pitkin, M.; Cassidy, C.; Shevtsov, M. A.; Jarrell, J. R.; Park, H.; Farrell, B. J.; Dalton, J. F.; Childers, W. L.; Kistenberg, R. S.; Oh, K.; Klishko, A. N.; Prilutsky, B. I. Recent progress in animal studies of the skin- and bone-integrated pylon with deep porosity for bone-anchored limb prosthetics with and without neural interface. Mil Med. 2021, 186, 688-695.
doi: 10.1093/milmed/usaa445
URL
|
13. |
Isackson, D.; McGill, L. D.; Bachus, K. N. Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk. Med Eng Phys. 2011, 33, 418-426.
doi: 10.1016/j.medengphy.2010.11.007
URL
|
14. |
Tsikandylakis, G.; Berlin, Ö.; Brånemark, R. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants for transhumeral amputees. Clin Orthop Relat Res. 2014, 472, 2947-2956.
doi: 10.1007/s11999-014-3695-6
URL
|
15. |
Fitzpatrick, N.; Smith, T. J.; Pendegrass, C. J.; Yeadon, R.; Ring, M.; Goodship, A. E.; Blunn, G. W. Intraosseous transcutaneous amputation prosthesis (ITAP) for limb salvage in 4 dogs. Vet Surg. 2011, 40, 909-925.
|
16. |
Kierdorf, U.; Flohr, S.; Gomez, S.; Landete-Castillejos, T.; Kierdorf, H. The structure of pedicle and hard antler bone in the European roe deer (Capreolus capreolus): a light microscope and backscattered electron imaging study. J Anat. 2013, 223, 364-384.
doi: 10.1111/joa.12091
URL
|
17. |
Pendegrass, C. J.; Goodship, A. E.; Blunn, G. W. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Biomaterials. 2006, 27, 4183-4191.
doi: 10.1016/j.biomaterials.2006.03.041
URL
|
18. |
Chimutengwende-Gordon, M.; Pendegrass, C.; Blunn, G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses. Bone Joint J. 2017, 99-b, 393-400.
doi: 10.1302/0301-620X.99B3.BJJ-2016-0360.R1
URL
|
19. |
Kang, N. V.; Pendegrass, C.; Marks, L.; Blunn, G. Osseocutaneous integration of an intraosseous transcutaneous amputation prosthesis implant used for reconstruction of a transhumeral amputee: case report. J Hand Surg Am. 2010, 35, 1130-1134.
|
20. |
Anil, U.; Singh, V.; Schwarzkopf, R. Diagnosis and detection of subtle aseptic loosening in total hip arthroplasty. J Arthroplasty. 2022, 37, 1494-1500.
doi: 10.1016/j.arth.2022.02.060
URL
|
21. |
Abu-Amer, Y.; Darwech, I.; Clohisy, J. C. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007, 9 Suppl 1, S6.
|
22. |
Mead, R.; Gilmour, S. G.; Mead, A. Statistical principles for the design of experiments:applications to real experiments. Cambridge University Press: Cambridge. 2012.
|
23. |
Steinstraesser, L.; Sorkin, M.; Niederbichler, A. D.; Becerikli, M.; Stupka, J.; Daigeler, A.; Kesting, M. R.; Stricker, I.; Jacobsen, F.; Schulte, M. A novel human skin chamber model to study wound infection ex vivo. Arch Dermatol Res. 2010, 302, 357-365.
doi: 10.1007/s00403-009-1009-8
URL
|
24. |
Pendegrass, C. J.; Gordon, D.; Middleton, C. A.; Sun, S. N.; Blunn, G. W. Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy. J Bone Joint Surg Br. 2008, 90, 114-121.
|
25. |
Caiado, F.; Carvalho, T.; Silva, F.; Castro, C.; Clode, N.; Dye, J. F.; Dias, S. The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials. 2011, 32, 7096-7105.
doi: 10.1016/j.biomaterials.2011.06.022
URL
|
26. |
Coulter, F. B.; Levey, R. E.; Robinson, S. T.; Dolan, E. B.; Deotti, S.; Monaghan, M.; Dockery, P.; Coulter, B. S.; Burke, L. P.; Lowery, A. J.; Beatty, R.; Paetzold, R.; Prendergast, J. J.; Bellavia, G.; Straino, S.; Cianfarani, F.; Salamone, M.; Bruno, C. M.; Moerman, K. M.; Ghersi, G.; Duffy, G. P.; O’Cearbhaill, E. D. Additive manufacturing of multi-scale porous soft tissue implants that encourage vascularization and tissue ingrowth. Adv Healthc Mater. 2021, 10, e2100229.
|
27. |
Overmann, A. L.; Aparicio, C.; Richards, J. T.; Mutreja, I.; Fischer, N. G.; Wade, S. M.; Potter, B. K.; Davis, T. A.; Bechtold, J. E.; Forsberg, J. A.; Dey, D. Orthopaedic osseointegration: Implantology and future directions. J Orthop Res. 2020, 38, 1445-1454.
doi: 10.1002/jor.24576
URL
|
28. |
Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016, 59, 690-701.
doi: 10.1016/j.msec.2015.10.069
URL
|
29. |
Chimutengwende-Gordon, N. F. Enhancing the soft tissue-implant seal and reducing bacterial colonisation around the intraosseous transcutaneous amputation prosthesis. University College London: College. 2015.
|
30. |
Akhmanova, M.; Osidak, E.; Domogatsky, S.; Rodin, S.; Domogatskaya, a. physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int. 2015, 2015, 167025.
|
31. |
Ghilan, A.; Chiriac, A. P.; Nita, L. E.; Rusu, A. G.; Neamtu, I.; Chiriac, V. M. Trends in 3D printing processes for biomedical field: opportunities and challenges. J Polym Environ. 2020, 28, 1345-1367.
doi: 10.1007/s10924-020-01722-x
URL
|