Biomaterials Translational ›› 2021, Vol. 2 ›› Issue (1): 30-42.doi: 10.3877/cma.j.issn.2096-112X.2021.01.005
• REVIEW • Previous Articles Next Articles
Received:
2021-03-03
Revised:
2021-03-18
Accepted:
2021-03-19
Online:
2021-03-31
Published:
2021-03-28
Contact:
Jingyu Fan
E-mail:jingyu@email.sc.edu
Jatoi, I.; Fan, J. A biomaterials viewpoint for the 2020 SARSCoV-2 vaccine development. Biomater Transl. 2021, 2(1), 30-42.
Figure 1. Structure of SARS-CoV-2. A graphic illustrating the structure of SARS-CoV-2, which shows the viral RNA along with the S, M, E, and N proteins. Figure reprinted from Shaikh et al.4 Licensed under CC BY 4.0. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Figure 2. The SARS-CoV-2 spike protein bound to the ACE2 receptor. (A) The spike protein RBD (light blue, purple) is shown containing the receptor-binding motif (purple) while at the interface of the ACE2 receptor (tan). (B) Interface residues of the RBD (purple) are shown interacting with ACE2 residues in direct contact (red) or extended direct contact (blue) with the RBD. Figure reprinted from Lam et al.6 Licensed under CC BY 4.0. ACE2: angiotensin converting enzyme II; RBD: receptor-binding domain; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Vaccine candidate | Company | Mechanism | Phase |
---|---|---|---|
SARS-CoV-2 vaccine | Sinovac Research and Development Co., Ltd. | Inactivated | Phase 3 |
Inactivated SARS-CoV-2 vaccine | Sinopharm + China National Biotec Group Co. Ltd. + Wuhan Institute of Biological Products | Inactivated | Phase 3 |
Inactivated SARS-CoV-2 vaccine | Sinopharm + China National Biotec Group Co. Ltd. + Beijing Institute of Biological Products | Inactivated | Phase 3 |
ChAdOx1-S (AZD1222) | AstraZeneca + University of Oxford | Viral vector | Phase 3 |
Recombinant novel coronavirus vaccine (adenovirus type 5 vector) | CanSino Biologics Inc. + Beijing Institute of Biotechnology | Viral vector | Phase 3 |
Gam-COVID-Vac, Aden-based (rAd26-S+rAd5-S) | Gamaleya Research Institute, Health Ministry of the Russian Federation | Viral vector | Phase 3 |
AD26.COV2.S | Janssen Pharmaceuticals, Inc. | Viral vector | Phase 3 |
SARS-CoV-2 rS/Matrix M1-Adjuvant | Novavax | Protein subunit | Phase 3 |
mRNA-1273 | Moderna + National Institute of Allergy and Infectious Diseases | RNA | Phase 3 |
BNT162 (3 LNP-mRNAs) | BioNTech + Fosun Pharma; Jiangsu Provincial Centre for Disease Prevention and Control + Pfizer | RNA | Phase 2/3 |
Recombinant SARS-CoV-2 vaccine | Anhui Zhifei Longcom Biopharmaceuticals + Institute of Microbiology, Chinese Academy of Sciences | Protein subunit | Phase 3 |
CVnCoV vaccine | CureVac AG | RNA | Phase 3 |
SARS-CoV-2 vaccine | Institute of Medical Biology, Chinese Academy of Medical Sciences | Inactivated | Phase 3 |
QazCovid-in - COVID-19 inactivated vaccine | Research Institute for Biological Safety Problems, Republic of Kazakhstan | Inactivated | Phase 3 |
INO-4800+electroporation | Inovio Pharmaceuticals + International Vaccine Institute, South Korea + Advaccine (Suzhou) Biopharmaceutical Co., Ltd. | DNA | Phase 2/3 |
AG0301-COVID19 | AnGes + Takara Bio Inc. + Osaka University | DNA | Phase 2/3 |
nCov vaccine | Cadila Healthcare Ltd. | DNA | Phase 3 |
GX-19 | Genexine Consortium | DNA | Phase 1/2 |
Whole-Virion Inactivated SARS-CoV-2 Vaccine (BBV152) | Bharat Biotech International Limited | Inactivated | Phase 3 |
KBP-COVID-19 (RBD-based) | Kentucky Bioprocessing Inc. | Protein subunit | Phase 1/2 |
SARS-CoV-2 vaccine formulation 1 with adjuvant | Sanofi Pasteur + GSK | Protein subunit | Phase 1/2 |
ARCT-021 | Arcturus Therapeutics | RNA | Phase 2 |
RBD SARS-CoV-2 HBsAg VLP vaccine | Serum Institute of India + Accelagen Pty | Virus like particle | Phase 1/2 |
Inactivated SARS-CoV-2 vaccine | Shenzhen Kangtai Biological Products Co., Ltd. | Inactivated | Phase 2 |
GRAd-COV2 | ReiThera + Leukocare + Univercells | Viral vector | Phase 1 |
VXA-CoV2-1 AD5 adjuvanted oral vaccine platform | Vaxart Inc. | Viral vector | Phase 1 |
MVA-SARS-2-S | University Medical Centre Hamburg-Eppendorf + Ludwig Maximilian University of Munich | Viral vector | Phase 2 |
SCB-2019 + AS03 or CpG 1018 adjuvant plus Alum adjuvant | Clover Biopharmaceuticals Inc./GSK/Dynavax | Protein subunit | Phase 2/3 |
COVID19 vaccine | Vaxine Pty Ltd. + Medytox | Protein subunit | Phase 1 |
MVC-COV1901 (S-2P protein + CpG 1018) | Medigen Vaccine Biologics + Dynavax + National Institute of Allergy and Infectious Diseases | Protein subunit | Phase 1 |
FINLAY-FR anti-SARS-CoV-2 Vaccine | Instituto Finlay de Vacunas | Protein subunit | Phase 2 |
EpiVacCorona | Federal Budgetary Research Institution, State Research Centre of Virology and Biotechnology “Vector” | Protein subunit | Phase 1/2 |
RBD Recombinant SARS-CoV-2 vaccine (Sf9 cell) | West China Hospital of Sichuan University | Protein subunit | Phase 2 |
IMP CoVac-1 (SARS-CoV-2 HLA-DR peptides) | University Hospital Tübingen | Protein subunit | Phase 1 |
UB-612 | COVAXX + United Biomedical Inc. | Protein subunit | Phase 2/3 |
V591-001 - Measles-vector based (TMV-o38) | Merck & Co. Inc. + Themis + Merck Sharp & Dohme Ltd. + Institut Pasteur + University of Pittsburgh | Viral vector (replicating) | Phase 1/2 |
DelNS1-2019-nCoV-RBD-OPT1 | Jiangsu Provincial Centre for Disease Prevention and Control | Viral vector (replicating) | Phase 2 |
LNP-nCoVsaRNA | Imperial College London | RNA | Phase 1 |
SARS-CoV-2 mRNA vaccine | Shulan Hospital + Guangxi Centre for Disease Prevention and Control | RNA | Phase 1 |
Coronavirus-like particle COVID-19 | Medicago Inc. | Viral like particle | Phase 2/3 |
Covid-19/aAPC vaccine | Shenzhen Geno-Immune Medical Institute | Viral vector (replicating) + APC | Phase 1 |
LV-SMENP-DC vaccine | Shenzhen Geno-Immune Medical Institute | Viral vector (non-replicating) + APC | Phase 1/2 |
AdimrSC-2f | Adimmune Corporation | Protein subunit | Phase 1 |
Covigenix VAX-001 | Entos Pharmaceuticals Inc. | DNA | Phase 1 |
CORVax | Providence Health & Services | DNA | Phase 1 |
ChulaCov19 mRNA vaccine | Chulalongkorn University | RNA | Phase 1 |
bacTRL-Spike | Symvivo Corporation | DNA | Phase 1 |
hAd5-S-Fusion+N-ETSD vaccine | ImmunityBio, Inc. | Viral vector | Phase 1 |
COH04S1 (MVA-SARS-2-S) | City of Hope Medical Center + National Cancer Institute | Viral vector | Phase 1 |
rVSV-SARS-CoV-2-S vaccine | Israel Institute for Biological Research | Viral vector (replicating) | Phase 1/2 |
Dendritic cell vaccine AV-COVID-19 | Avita Biomedical, Inc. + National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia | Viral vector (replicating) + APC | Phase 1/2 |
COVI-VAC | Codagenix/Serum Institute of India | Live attenuated virus | Phase 1 |
CIGB-669 (RBD+AgnHB) | Center for Genetic Engineering and Biotechnology | Protein subunit | Phase 1/2 |
CIGB-66 (RBD + aluminium hydroxide) | Center for Genetic Engineering and Biotechnology | Protein subunit | Phase 1/2 |
VLA2001 | Valneva + National Institute for Health Research, United Kingdom | Inactivated | Phase 1/2 |
BECOV2 | Biological E., Ltd. | Protein subunit | Phase 1/2 |
AdCLD-CoV19 | Cellid Co. Ltd. | Viral vector (replicating) | Phase 1/2 |
GLS-5310 | GeneOne Life Science, Inc. | DNA | Phase 1/2 |
Recombinant SARS-CoV-2 spike protein, aluminium adjuvanted | Nanogen Pharmaceutical Biotechnology | Protein subunit | Phase 1/2 |
S-268019 | Shionogi Co., Ltd. | Protein subunit | Phase 1/2 |
AdCOVID | Altimmune, Inc. | Viral vector | Phase 1 |
SARS-CoV-2-RBD-Fc fusion protein | University Medical Center Groningen + Akston Biosciences Inc. | Protein subunit | Phase 1/2 |
ERUCOV-VAC | Erciyes University | Inactivated | Phase 1 |
Table 1 Summary of COVID-19 vaccines currently in clinical trials
Vaccine candidate | Company | Mechanism | Phase |
---|---|---|---|
SARS-CoV-2 vaccine | Sinovac Research and Development Co., Ltd. | Inactivated | Phase 3 |
Inactivated SARS-CoV-2 vaccine | Sinopharm + China National Biotec Group Co. Ltd. + Wuhan Institute of Biological Products | Inactivated | Phase 3 |
Inactivated SARS-CoV-2 vaccine | Sinopharm + China National Biotec Group Co. Ltd. + Beijing Institute of Biological Products | Inactivated | Phase 3 |
ChAdOx1-S (AZD1222) | AstraZeneca + University of Oxford | Viral vector | Phase 3 |
Recombinant novel coronavirus vaccine (adenovirus type 5 vector) | CanSino Biologics Inc. + Beijing Institute of Biotechnology | Viral vector | Phase 3 |
Gam-COVID-Vac, Aden-based (rAd26-S+rAd5-S) | Gamaleya Research Institute, Health Ministry of the Russian Federation | Viral vector | Phase 3 |
AD26.COV2.S | Janssen Pharmaceuticals, Inc. | Viral vector | Phase 3 |
SARS-CoV-2 rS/Matrix M1-Adjuvant | Novavax | Protein subunit | Phase 3 |
mRNA-1273 | Moderna + National Institute of Allergy and Infectious Diseases | RNA | Phase 3 |
BNT162 (3 LNP-mRNAs) | BioNTech + Fosun Pharma; Jiangsu Provincial Centre for Disease Prevention and Control + Pfizer | RNA | Phase 2/3 |
Recombinant SARS-CoV-2 vaccine | Anhui Zhifei Longcom Biopharmaceuticals + Institute of Microbiology, Chinese Academy of Sciences | Protein subunit | Phase 3 |
CVnCoV vaccine | CureVac AG | RNA | Phase 3 |
SARS-CoV-2 vaccine | Institute of Medical Biology, Chinese Academy of Medical Sciences | Inactivated | Phase 3 |
QazCovid-in - COVID-19 inactivated vaccine | Research Institute for Biological Safety Problems, Republic of Kazakhstan | Inactivated | Phase 3 |
INO-4800+electroporation | Inovio Pharmaceuticals + International Vaccine Institute, South Korea + Advaccine (Suzhou) Biopharmaceutical Co., Ltd. | DNA | Phase 2/3 |
AG0301-COVID19 | AnGes + Takara Bio Inc. + Osaka University | DNA | Phase 2/3 |
nCov vaccine | Cadila Healthcare Ltd. | DNA | Phase 3 |
GX-19 | Genexine Consortium | DNA | Phase 1/2 |
Whole-Virion Inactivated SARS-CoV-2 Vaccine (BBV152) | Bharat Biotech International Limited | Inactivated | Phase 3 |
KBP-COVID-19 (RBD-based) | Kentucky Bioprocessing Inc. | Protein subunit | Phase 1/2 |
SARS-CoV-2 vaccine formulation 1 with adjuvant | Sanofi Pasteur + GSK | Protein subunit | Phase 1/2 |
ARCT-021 | Arcturus Therapeutics | RNA | Phase 2 |
RBD SARS-CoV-2 HBsAg VLP vaccine | Serum Institute of India + Accelagen Pty | Virus like particle | Phase 1/2 |
Inactivated SARS-CoV-2 vaccine | Shenzhen Kangtai Biological Products Co., Ltd. | Inactivated | Phase 2 |
GRAd-COV2 | ReiThera + Leukocare + Univercells | Viral vector | Phase 1 |
VXA-CoV2-1 AD5 adjuvanted oral vaccine platform | Vaxart Inc. | Viral vector | Phase 1 |
MVA-SARS-2-S | University Medical Centre Hamburg-Eppendorf + Ludwig Maximilian University of Munich | Viral vector | Phase 2 |
SCB-2019 + AS03 or CpG 1018 adjuvant plus Alum adjuvant | Clover Biopharmaceuticals Inc./GSK/Dynavax | Protein subunit | Phase 2/3 |
COVID19 vaccine | Vaxine Pty Ltd. + Medytox | Protein subunit | Phase 1 |
MVC-COV1901 (S-2P protein + CpG 1018) | Medigen Vaccine Biologics + Dynavax + National Institute of Allergy and Infectious Diseases | Protein subunit | Phase 1 |
FINLAY-FR anti-SARS-CoV-2 Vaccine | Instituto Finlay de Vacunas | Protein subunit | Phase 2 |
EpiVacCorona | Federal Budgetary Research Institution, State Research Centre of Virology and Biotechnology “Vector” | Protein subunit | Phase 1/2 |
RBD Recombinant SARS-CoV-2 vaccine (Sf9 cell) | West China Hospital of Sichuan University | Protein subunit | Phase 2 |
IMP CoVac-1 (SARS-CoV-2 HLA-DR peptides) | University Hospital Tübingen | Protein subunit | Phase 1 |
UB-612 | COVAXX + United Biomedical Inc. | Protein subunit | Phase 2/3 |
V591-001 - Measles-vector based (TMV-o38) | Merck & Co. Inc. + Themis + Merck Sharp & Dohme Ltd. + Institut Pasteur + University of Pittsburgh | Viral vector (replicating) | Phase 1/2 |
DelNS1-2019-nCoV-RBD-OPT1 | Jiangsu Provincial Centre for Disease Prevention and Control | Viral vector (replicating) | Phase 2 |
LNP-nCoVsaRNA | Imperial College London | RNA | Phase 1 |
SARS-CoV-2 mRNA vaccine | Shulan Hospital + Guangxi Centre for Disease Prevention and Control | RNA | Phase 1 |
Coronavirus-like particle COVID-19 | Medicago Inc. | Viral like particle | Phase 2/3 |
Covid-19/aAPC vaccine | Shenzhen Geno-Immune Medical Institute | Viral vector (replicating) + APC | Phase 1 |
LV-SMENP-DC vaccine | Shenzhen Geno-Immune Medical Institute | Viral vector (non-replicating) + APC | Phase 1/2 |
AdimrSC-2f | Adimmune Corporation | Protein subunit | Phase 1 |
Covigenix VAX-001 | Entos Pharmaceuticals Inc. | DNA | Phase 1 |
CORVax | Providence Health & Services | DNA | Phase 1 |
ChulaCov19 mRNA vaccine | Chulalongkorn University | RNA | Phase 1 |
bacTRL-Spike | Symvivo Corporation | DNA | Phase 1 |
hAd5-S-Fusion+N-ETSD vaccine | ImmunityBio, Inc. | Viral vector | Phase 1 |
COH04S1 (MVA-SARS-2-S) | City of Hope Medical Center + National Cancer Institute | Viral vector | Phase 1 |
rVSV-SARS-CoV-2-S vaccine | Israel Institute for Biological Research | Viral vector (replicating) | Phase 1/2 |
Dendritic cell vaccine AV-COVID-19 | Avita Biomedical, Inc. + National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia | Viral vector (replicating) + APC | Phase 1/2 |
COVI-VAC | Codagenix/Serum Institute of India | Live attenuated virus | Phase 1 |
CIGB-669 (RBD+AgnHB) | Center for Genetic Engineering and Biotechnology | Protein subunit | Phase 1/2 |
CIGB-66 (RBD + aluminium hydroxide) | Center for Genetic Engineering and Biotechnology | Protein subunit | Phase 1/2 |
VLA2001 | Valneva + National Institute for Health Research, United Kingdom | Inactivated | Phase 1/2 |
BECOV2 | Biological E., Ltd. | Protein subunit | Phase 1/2 |
AdCLD-CoV19 | Cellid Co. Ltd. | Viral vector (replicating) | Phase 1/2 |
GLS-5310 | GeneOne Life Science, Inc. | DNA | Phase 1/2 |
Recombinant SARS-CoV-2 spike protein, aluminium adjuvanted | Nanogen Pharmaceutical Biotechnology | Protein subunit | Phase 1/2 |
S-268019 | Shionogi Co., Ltd. | Protein subunit | Phase 1/2 |
AdCOVID | Altimmune, Inc. | Viral vector | Phase 1 |
SARS-CoV-2-RBD-Fc fusion protein | University Medical Center Groningen + Akston Biosciences Inc. | Protein subunit | Phase 1/2 |
ERUCOV-VAC | Erciyes University | Inactivated | Phase 1 |
Figure 3. Summary of SARS-CoV-2 vaccine types. A summary of several of the major vaccine types being manufactured, including live attenuated (A), inactivated (B, C), viral vector (D), bacterial vector (E), virus-like particles (F), DNA- or RNA-based (G), recombinant protein subunit (H), and synthetic peptides vaccines (I). Figure reprinted from Liu et al.13 Licensed under CC BY 4.0.
Figure 4. Schematic mechanism of manufacturing of viral vector vaccines (A, adenovirus as example) and mRNA vaccines (B). The RNA of SARS-CoV-2 was sequenced, which identified the coding of surface proteins. Using endonuclease methods, an engineered mutated adenovirus vector that carries the SARS-CoV-2 surface protein gene was made. Different from the preparation of adenovirus, the mRNA sequences that encode the spike protein were directly generated. To enhance the stabilities of mRNA and to escape from human immunities, lipid nanoparticles were used to envelope the mRNA. After injection of both viral vector and mRNA vaccines, cells will read the mRNA sequence express the epitope of the surface protein (red within cell) in the cytoplasm or in the nucleus. This will trigger the host’s humoral and cellular immune responses that could potentially contribute to specific immunity to SARS-CoV-2.
Figure 5. Adjuvants improve immunogenicity via different mechanisms. 1. Alum and emulsion such as MF59 generate depots to trap and recruit antigen presenting cells (APCs). 2. By utilizing TLR/NOD agonists, pattern recognition receptors (PRR) were covalently bound to their ligands, followed by the activation of downstream pathways. 3. Aside from APC recruitment, Alum could also induce NLRP3 inflammasome. 4. Depot generation and induction of MHC responses could be obtained by application of MF59 and Freund’s Incomplete Adjuvant (IFA). The image is licensed and authorized by InvivoGen.
1. |
Hu, B.; Guo, H.; Zhou, P.; Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021, 19, 141-154.
doi: 10.1038/s41579-020-00459-7 URL pmid: 33024307 |
2. | World Health Organization. The COVID-19 candidate vaccine landscape and tracker. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. Accessed by January 6, 2021. |
3. |
Astuti, I.; Ysrafil. Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020, 14, 407-412.
doi: 10.1016/j.dsx.2020.04.020 URL pmid: 32335367 |
4. |
Shaikh, S. S.; Jose, A. P.; Nerkar, D. A.; Vijaykumar Kv, M.; Shaikh, S. K. COVID-19 pandemic crisis-a complete outline of SARS-CoV-2. Futur J Pharm Sci. 2020, 6, 116.
doi: 10.1186/s43094-020-00133-y URL pmid: 33224993 |
5. |
Huang, Y.; Yang, C.; Xu, X. F.; Xu, W.; Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020, 41, 1141-1149.
doi: 10.1038/s41401-020-0485-4 URL pmid: 32747721 |
6. |
Lam, S. D.; Bordin, N.; Waman, V. P.; Scholes, H. M.; Ashford, P.; Sen, N.; van Dorp, L.; Rauer, C.; Dawson, N. L.; Pang, C. S. M.; Abbasian, M.; Sillitoe, I.; Edwards, S. J. L.; Fraternali, F.; Lees, J. G.; Santini, J. M.; Orengo, C. A. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. Sci Rep. 2020, 10, 16471.
doi: 10.1038/s41598-020-71936-5 URL pmid: 33020502 |
7. |
Zhang, H.; Penninger, J. M.; Li, Y.; Zhong, N.; Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586-590.
doi: 10.1007/s00134-020-05985-9 URL pmid: 32125455 |
8. |
McMahan, K.; Yu, J.; Mercado, N. B.; Loos, C.; Tostanoski, L. H.; Chandrashekar, A.; Liu, J.; Peter, L.; Atyeo, C.; Zhu, A.; Bondzie, E. A.; Dagotto, G.; Gebre, M. S.; Jacob-Dolan, C.; Li, Z.; Nampanya, F.; Patel, S.; Pessaint, L.; Van Ry, A.; Blade, K.; Yalley-Ogunro, J.; Cabus, M.; Brown, R.; Cook, A.; Teow, E.; Andersen, H.; Lewis, M. G.; Lauffenburger, D. A.; Alter, G.; Barouch, D. H. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021, 590, 630-634.
doi: 10.1038/s41586-020-03041-6 URL pmid: 33276369 |
9. |
Tang, F.; Quan, Y.; Xin, Z. T.; Wrammert, J.; Ma, M. J.; Lv, H.; Wang, T. B.; Yang, H.; Richardus, J. H.; Liu, W.; Cao, W. C. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011, 186, 7264-7268.
doi: 10.4049/jimmunol.0903490 URL pmid: 21576510 |
10. |
Spellberg, B.; Nielsen, T. B.; Casadevall, A. Antibodies, immunity, and COVID-19. JAMA Intern Med. 2020. doi: 10.1001/jamainternmed.2020.7986.
doi: 10.1001/jamainternmed.2021.0074 URL pmid: 33720309 |
11. |
Delrue, I.; Verzele, D.; Madder, A.; Nauwynck, H. J. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines. 2012, 11, 695-719.
doi: 10.1586/erv.12.38 URL pmid: 22873127 |
12. |
Badgett, M. R.; Auer, A.; Carmichael, L. E.; Parrish, C. R.; Bull, J. J. Evolutionary dynamics of viral attenuation. J Virol. 2002, 76, 10524-10529.
doi: 10.1128/jvi.76.20.10524-10529.2002 URL pmid: 12239331 |
13. |
Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics. 2020, 10, 7821-7835.
doi: 10.7150/thno.47987 URL pmid: 32685022 |
14. |
Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020, 5, 237.
doi: 10.1038/s41392-020-00352-y URL pmid: 33051445 |
15. |
Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J. S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; Smith, G.; Patel, N.; Frieman, M. B.; Haupt, R. E.; Logue, J.; McGrath, M.; Weston, S.; Piedra, P. A.; Desai, C.; Callahan, K.; Lewis, M.; Price-Abbott, P.; Formica, N.; Shinde, V.; Fries, L.; Lickliter, J. D.; Griffin, P.; Wilkinson, B.; Glenn, G. M. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020, 383, 2320-2332.
doi: 10.1056/NEJMoa2026920 URL pmid: 32877576 |
16. |
Graham, B. S. Rapid COVID-19 vaccine development. Science. 2020, 368, 945-946.
doi: 10.1126/science.abb8923 URL pmid: 32385100 |
17. |
Tian, J. H.; Patel, N.; Haupt, R.; Zhou, H.; Weston, S.; Hammond, H.; Logue, J.; Portnoff, A. D.; Norton, J.; Guebre-Xabier, M.; Zhou, B.; Jacobson, K.; Maciejewski, S.; Khatoon, R.; Wisniewska, M.; Moffitt, W.; Kluepfel-Stahl, S.; Ekechukwu, B.; Papin, J.; Boddapati, S.; Jason Wong, C.; Piedra, P. A.; Frieman, M. B.; Massare, M. J.; Fries, L.; Bengtsson, K. L.; Stertman, L.; Ellingsworth, L.; Glenn, G.; Smith, G. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021, 12, 372.
doi: 10.1038/s41467-020-20653-8 URL pmid: 33446655 |
18. |
Kaur, S. P.; Gupta, V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020, 288, 198114.
doi: 10.1016/j.virusres.2020.198114 URL pmid: 32800805 |
19. |
Reimer, J. M.; Karlsson, K. H.; Lövgren-Bengtsson, K.; Magnusson, S. E.; Fuentes, A.; Stertman, L. Matrix-MTM adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen . PLoS One. 2012, 7, e41451.
doi: 10.1371/journal.pone.0041451 URL pmid: 22844480 |
20. | Siegrist, C. A. 2 - Vaccine Immunology. In Plotkin’s Vaccines (Seventh Edition), Plotkin, S. A.; Orenstein, W. A.; Offit, P. A.; Edwards, K. M., eds. Elsevier. 2018, pp 16-34.e17. |
21. |
Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438-444.
doi: 10.1016/s0966-842x(03)00208-7 URL pmid: 13678860 |
22. | Chung, Y. H.; Beiss, V.; Fiering, S. N.; Steinmetz, N. F. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020, 14, 12522-12537. |
23. |
Dai, L.; Gao, G. F. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021, 21, 73-82.
doi: 10.1038/s41577-020-00480-0 URL pmid: 33340022 |
24. |
Sharma, P. K.; Dmitriev, I. P.; Kashentseva, E. A.; Raes, G.; Li, L.; Kim, S. W.; Lu, Z. H.; Arbeit, J. M.; Fleming, T. P.; Kaliberov, S. A.; Goedegebuure, S. P.; Curiel, D. T.; Gillanders, W. E. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Ther. 2018, 25, 27-38.
doi: 10.1038/s41417-017-0002-1 URL pmid: 29242639 |
25. |
Zhu, F. C.; Guan, X. H.; Li, Y. H.; Huang, J. Y.; Jiang, T.; Hou, L. H.; Li, J. X.; Yang, B. F.; Wang, L.; Wang, W. J.; Wu, S. P.; Wang, Z.; Wu, X. H.; Xu, J. J.; Zhang, Z.; Jia, S. Y.; Wang, B. S.; Hu, Y.; Liu, J. J.; Zhang, J.; Qian, X. A.; Li, Q.; Pan, H. X.; Jiang, H. D.; Deng, P.; Gou, J. B.; Wang, X. W.; Wang, X. H.; Chen, W. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020, 396, 479-488.
doi: 10.1016/S0140-6736(20)31605-6 URL pmid: 32702299 |
26. |
Geisbert, T. W.; Bailey, M.; Hensley, L.; Asiedu, C.; Geisbert, J.; Stanley, D.; Honko, A.; Johnson, J.; Mulangu, S.; Pau, M. G.; Custers, J.; Vellinga, J.; Hendriks, J.; Jahrling, P.; Roederer, M.; Goudsmit, J.; Koup, R.; Sullivan, N. J. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol. 2011, 85, 4222-4233.
doi: 10.1128/JVI.02407-10 URL pmid: 21325402 |
27. |
Dicks, M. D.; Spencer, A. J.; Edwards, N. J.; Wadell, G.; Bojang, K.; Gilbert, S. C.; Hill, A. V.; Cottingham, M. G. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One. 2012, 7, e40385.
doi: 10.1371/journal.pone.0040385 URL pmid: 22808149 |
28. |
Gerke, C.; Frantz, P. N.; Ramsauer, K.; Tangy, F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines. 2019, 18, 393-403.
doi: 10.1080/14760584.2019.1562908 URL pmid: 30601074 |
29. |
Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 2012, 9, 1319-1330.
doi: 10.4161/rna.22269 URL pmid: 23064118 |
30. |
Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018, 17, 261-279.
doi: 10.1038/nrd.2017.243 URL pmid: 29326426 |
31. |
Hoerr, I.; Obst, R.; Rammensee, H. G.; Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol. 2000, 30, 1-7.
doi: 10.1002/1521-4141(200001)30:1<1::AID-IMMU1>3.0.CO;2-# URL pmid: 10602021 |
32. |
Pardi, N.; Tuyishime, S.; Muramatsu, H.; Kariko, K.; Mui, B. L.; Tam, Y. K.; Madden, T. D.; Hope, M. J.; Weissman, D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015, 217, 345-351.
doi: 10.1016/j.jconrel.2015.08.007 URL pmid: 26264835 |
33. |
Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.; McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J.; Pruijssers, A. J.; McDermott, A.; Flach, B.; Doria-Rose, N. A.; Corbett, K. S.; Morabito, K. M.; O’Dell, S.; Schmidt, S. D.; Swanson, P. A. 2nd; Padilla, M.; Mascola, J. R.; Neuzil, K. M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.; Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J. E.; Graham, B. S.; Beigel, J. H. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med. 2020, 383, 1920-1931.
doi: 10.1056/NEJMoa2022483 URL pmid: 32663912 |
34. |
Mulligan, M. J.; Lyke, K. E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K. A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P. Y.; Türeci, Ö.; Tompkins, K. R.; Walsh, E. E.; Frenck, R.; Falsey, A. R.; Dormitzer, P. R.; Gruber, W. C.; Şahin, U.; Jansen, K. U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020, 586, 589-593.
doi: 10.1038/s41586-020-2639-4 URL pmid: 32785213 |
35. |
Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008, 16, 1833-1840.
doi: 10.1038/mt.2008.200 URL pmid: 18797453 |
36. |
Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Pérez Marc, G.; Moreira, E. D.; Zerbini, C.; Bailey, R.; Swanson, K. A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W. V.; Cooper, D.; Frenck, R. W. Jr.; Hammitt, L. L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D. B.; Mather, S.; Dormitzer, P. R.; Şahin, U.; Jansen, K. U.; Gruber, W. C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020, 383, 2603-2615.
doi: 10.1056/NEJMoa2034577 URL pmid: 33301246 |
37. |
Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B. S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021, 384, 403-416.
doi: 10.1056/NEJMoa2035389 URL pmid: 33378609 |
38. |
Smith, T. R. F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X.; Yan, J.; Gary, E. N.; Walker, S. N.; Schultheis, K.; Purwar, M.; Xu, Z.; Walters, J.; Bhojnagarwala, P.; Yang, M.; Chokkalingam, N.; Pezzoli, P.; Parzych, E.; Reuschel, E. L.; Doan, A.; Tursi, N.; Vasquez, M.; Choi, J.; Tello-Ruiz, E.; Maricic, I.; Bah, M. A.; Wu, Y.; Amante, D.; Park, D. H.; Dia, Y.; Ali, A. R.; Zaidi, F. I.; Generotti, A.; Kim, K. Y.; Herring, T. A.; Reeder, S.; Andrade, V. M.; Buttigieg, K.; Zhao, G.; Wu, J. M.; Li, D.; Bao, L.; Liu, J.; Deng, W.; Qin, C.; Brown, A. S.; Khoshnejad, M.; Wang, N.; Chu, J.; Wrapp, D.; McLellan, J. S.; Muthumani, K.; Wang, B.; Carroll, M. W.; Kim, J. J.; Boyer, J.; Kulp, D. W.; Humeau, L.; Weiner, D. B.; Broderick, K. E. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020, 11, 2601.
doi: 10.1038/s41467-020-16505-0 URL pmid: 32433465 |
39. |
Silveira, M. M.; Moreira, G.; Mendonça, M. DNA vaccines against COVID-19: perspectives and challenges. Life Sci. 2021, 267, 118919.
doi: 10.1016/j.lfs.2020.118919 URL pmid: 33352173 |
40. |
Kool, M.; Soullié, T.; van Nimwegen, M.; Willart, M. A.; Muskens, F.; Jung, S.; Hoogsteden, H. C.; Hammad, H.; Lambrecht, B. N. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008, 205, 869-882.
URL pmid: 18362170 |
41. |
Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D. M. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011, 10, 499-511.
doi: 10.1586/erv.10.174 URL pmid: 21506647 |
42. |
Lloyd, J.; Cheyne, J. The origins of the vaccine cold chain and a glimpse of the future. Vaccine. 2017, 35, 2115-2120.
doi: 10.1016/j.vaccine.2016.11.097 URL pmid: 28364918 |
43. | Advisory Committee on Immunization Practices. Storage and Handling of Immunobiologics. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/storage.html. Accessed by January 10, 2021. |
44. |
Crommelin, D. J. A.; Anchordoquy, T. J.; Volkin, D. B.; Jiskoot, W.; Mastrobattista, E. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021, 110, 997-1001.
URL pmid: 33321139 |
45. |
Zhang, N. N.; Li, X. F.; Deng, Y. Q.; Zhao, H.; Huang, Y. J.; Yang, G.; Huang, W. J.; Gao, P.; Zhou, C.; Zhang, R. R.; Guo, Y.; Sun, S. H.; Fan, H.; Zu, S. L.; Chen, Q.; He, Q.; Cao, T. S.; Huang, X. Y.; Qiu, H. Y.; Nie, J. H.; Jiang, Y.; Yan, H. Y.; Ye, Q.; Zhong, X.; Xue, X. L.; Zha, Z. Y.; Zhou, D.; Yang, X.; Wang, Y. C.; Ying, B.; Qin, C. F. thermostable mRNA vaccine against COVID-19. Cell. 2020, 182, 1271-1283.e16.
URL pmid: 32795413 |
46. |
Logunov, D. Y.; Dolzhikova, I. V.; Zubkova, O. V.; Tukhvatulin, A. I.; Shcheblyakov, D. V.; Dzharullaeva, A. S.; Grousova, D. M.; Erokhova, A. S.; Kovyrshina, A. V.; Botikov, A. G.; Izhaeva, F. M.; Popova, O.; Ozharovskaya, T. A.; Esmagambetov, I. B.; Favorskaya, I. A.; Zrelkin, D. I.; Voronina, D. V.; Shcherbinin, D. N.; Semikhin, A. S.; Simakova, Y. V.; Tokarskaya, E. A.; Lubenets, N. L.; Egorova, D. A.; Shmarov, M. M.; Nikitenko, N. A.; Morozova, L. F.; Smolyarchuk, E. A.; Kryukov, E. V.; Babira, V. F.; Borisevich, S. V.; Naroditsky, B. S.; Gintsburg, A. L. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020, 396, 887-897.
doi: 10.1016/S0140-6736(20)31866-3 URL pmid: 32896291 |
47. |
Wang, Y.; Zhang, Z.; Luo, J.; Han, X.; Wei, Y.; Wei, X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer. 2021, 20, 33.
doi: 10.1186/s12943-021-01311-z URL pmid: 33593376 |
48. |
Bachmann, M. F.; Rohrer, U. H.; Kündig, T. M.; Bürki, K.; Hengartner, H.; Zinkernagel, R. M. The influence of antigen organization on B cell responsiveness. Science. 1993, 262, 1448-1451.
doi: 10.1126/science.8248784 URL pmid: 8248784 |
49. |
Zhao, X.; Chen, L.; Luckanagul, J. A.; Zhang, X.; Lin, Y.; Wang, Q. Enhancing antibody response against small molecular hapten with tobacco mosaic virus as a polyvalent carrier. ChemBioChem. 2015, 16, 1279-1283.
doi: 10.1002/cbic.201500028 URL pmid: 25914312 |
50. | Zhang, X.; Zhao, X.; Luckanagul, J. A.; Yan, J.; Nie, Y.; Lee, L. A.; Wang, Q. Polymer-protein core-shell nanoparticles for enhanced antigen immunogenicity. ACS Macro Lett. 2017, 6, 442-446. |
51. | Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl. 1998, 37, 2754-2794. |
52. | Tyson, A.; Johnson, C.; Funk, C. U.S. Public Now Divided Over Whether To Get COVID-19 Vaccine. https://www.pewresearch.org/science/2020/09/17/u-s-public-now-divided-over-whether-to-get-covid-19-vaccine/. Accessed by January 10, 2021. |
53. |
Wise, J. Covid-19: New coronavirus variant is identified in UK. BMJ. 2020, 371, m4857.
doi: 10.1136/bmj.m4857 URL pmid: 33328153 |
54. |
Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E. J.; Msomi, N.; Mlisana, K.; von Gottberg, A.; Walaza, S.; Allam, M.; Ismail, A.; Mohale, T.; Glass, A. J.; Engelbrecht, S.; Van Zyl, G.; Preiser, W.; Petruccione, F.; Sigal, A.; Hardie, D.; Marais, G.; Hsiao, M.; Korsman, S.; Davies, M. A.; Tyers, L.; Mudau, I.; York, D.; Maslo, C.; Goedhals, D.; Abrahams, S.; Laguda-Akingba, O.; Alisoltani-Dehkordi, A.; Godzik, A.; Wibmer, C. K.; Sewell, B. T.; Lourenço, J.; Alcantara, L. C. J.; Kosakovsky Pond, S. L.; Weaver, S.; Martin, D.; Lessells, R. J.; Bhiman, J. N.; Williamson, C.; de Oliveira, T. Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein. Nature. 2021. doi: 10.1038/s41586-021-03402-9.
doi: 10.1038/d41586-020-00940-6 URL pmid: 33772232 |
55. |
Shin, M. D.; Shukla, S.; Chung, Y. H.; Beiss, V.; Chan, S. K.; Ortega-Rivera, O. A.; Wirth, D. M.; Chen, A.; Sack, M.; Pokorski, J. K.; Steinmetz, N. F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020, 15, 646-655.
doi: 10.1038/s41565-020-0737-y URL pmid: 32669664 |
[1] | Kamolrat Metavarayuth, Esteban Villarreal, Hui Wang, Qian Wang. Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles [J]. Biomaterials Translational, 2021, 2(2): 165-173. |
[2] | Yizhong Peng, Xiangcheng Qing, Hongyang Shu, Shuo Tian, Wenbo Yang, Songfeng Chen, Hui Lin, Xiao Lv, Lei Zhao, Xi Chen, Feifei Pu, Donghua Huang, Xu Cao, Zengwu Shao. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration [J]. Biomaterials Translational, 2021, 2(2): 91-142. |
[3] | Pingli Wu, Yangyang Liang, Guoming Sun. Engineering immune-responsive biomaterials for skin regeneration [J]. Biomaterials Translational, 2021, 2(1): 61-71. |
[4] | Ting Ge, Shengfeng Cheng. Physicochemical properties of respiratory droplets and their role in COVID-19 pandemics: a critical review [J]. Biomaterials Translational, 2021, 2(1): 10-18. |
[5] | Kaewta Rattanapisit, Gorawit Yusakul, Balamurugan Shanmugaraj, Kittinop Kittirotruji, Phassorn Suwatsrisakul, Eakachai Prompetchara, Suthira Taychakhoonavud, Waranyoo Phoolcharoen. Plant-produced recombinant SARS-CoV-2 receptor-binding domain; an economical, scalable biomaterial source for COVID-19 diagnosis [J]. Biomaterials Translational, 2021, 2(1): 43-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||