Biomaterials Translational ›› 2023, Vol. 4 ›› Issue (4): 248-269.doi: 10.12336/biomatertransl.2023.04.005
• REVIEW • Previous Articles Next Articles
Long Bai1,2,3#, Peiran Song1,3#, Jiacan Su1,2,3,*()
Received:
2023-11-01
Revised:
2023-11-21
Accepted:
2023-12-08
Online:
2023-12-27
Published:
2023-12-28
Contact:
Jiacan Su, drsujiacan@163.com.
About author:
#Author equally.
1. | Koushik, T. M.; Miller, C. M.; Antunes, E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023, 12, e2202766. |
2. |
Stahl, A.; Yang, Y. P. Regenerative approaches for the treatment of large bone defects. Tissue Eng Part B Rev. 2021, 27, 539-547.
doi: 10.1089/ten.teb.2020.0281 URL |
3. | Fernandes, T. A. P.; Gonçalves, L. M. L.; Brito, J. A. A. Relationships between bone turnover and energy metabolism. J Diabetes Res. 2017, 2017, 9021314. |
4. | Yuan, J.; Maturavongsadit, P.; Metavarayuth, K.; Luckanagul, J. A.; Wang, Q. Enhanced bone defect repair by polymeric substitute fillers of multiarm polyethylene glycol-crosslinked hyaluronic acid hydrogels. Macromol Biosci. 2019, 19, e1900021. |
5. |
Gyulay, K. K.; Karászi, P.; Rédei, M.; Sólymos, P.; Schandl, K.; Lacza, Z.; Horváthy, D. B. Evaluation of serum albumin-coated bone allograft for bone regeneration: a seven-year follow-up study of 26 cases. Int J Mol Sci. 2023, 24, 9232.
doi: 10.3390/ijms24119232 URL |
6. |
Ferraz, M. P. Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials. Materials (Basel). 2023, 16, 4117.
doi: 10.3390/ma16114117 URL |
7. |
Bai, L.; Du, Z.; Du, J.; Yao, W.; Zhang, J.; Weng, Z.; Liu, S.; Zhao, Y.; Liu, Y.; Zhang, X.; Huang, X.; Yao, X.; Crawford, R.; Hang, R.; Huang, D.; Tang, B.; Xiao, Y. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials. 2018, 162, 154-169.
doi: 10.1016/j.biomaterials.2018.02.010 URL |
8. |
Bosch-Rué, È.; Díez-Tercero, L.; Buitrago, J. O.; Castro, E.; Pérez, R. A. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater. 2023, 166, 14-41.
doi: 10.1016/j.actbio.2023.06.001 URL |
9. | Janmohammadi, M.; Nazemi, Z.; Salehi, A. O. M.; Seyfoori, A.; John, J. V.; Nourbakhsh, M. S.; Akbari, M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2023, 20, 137-163. |
10. | Wu, J.; Cheng, X.; Wu, J.; Chen, J.; Pei, X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater. 2023. doi: 10.1002/jbm.b.35326. |
11. | Wang, H.; Yu, R.; Wang, M.; Wang, S.; Ouyang, X.; Yan, Z.; Chen, S.; Wang, W.; Wu, F.; Fan, C.Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1. J Control Release. 2023, 356, 162-174. |
12. | Youssef, A.; Aboalola, D.; Han, V. K. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 2017, 2017, 9453108. |
13. |
Singh, S. K. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011, 100, 354-387.
doi: 10.1002/jps.22276 URL |
14. |
Jiskoot, W.; Randolph, T. W.; Volkin, D. B.; Middaugh, C. R.; Schöneich, C.; Winter, G.; Friess, W.; Crommelin, D. J.; Carpenter, J. F. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci. 2012, 101, 946-954.
doi: 10.1002/jps.23018 URL |
15. |
Mitchell, A. C.; Briquez, P. S.; Hubbell, J. A.; Cochran, J. R. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016, 30, 1-12.
doi: 10.1016/j.actbio.2015.11.007 URL |
16. |
Apostolopoulos, V.; Bojarska, J.; Chai, T. T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O. P.; Parhiz, H.; Perera, C. O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W. M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E. M.; Toth, I. A global review on short peptides: frontiers and perspectives. Molecules. 2021, 26, 430.
doi: 10.3390/molecules26020430 URL |
17. |
Hamley, I. W. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017, 117, 14015-14041.
doi: 10.1021/acs.chemrev.7b00522 URL |
18. |
Zou, P.; Chen, W. T.; Sun, T.; Gao, Y.; Li, L. L.; Wang, H. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci. 2020, 8, 4975-4996.
doi: 10.1039/D0BM00789G URL |
19. |
Chen, Z.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today. 2016, 19, 304-321.
doi: 10.1016/j.mattod.2015.11.004 URL |
20. |
Chai, Y. C.; Mendes, L. F.; van Gastel, N.; Carmeliet, G.; Luyten, F. P. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater. 2018, 72, 447-460.
doi: 10.1016/j.actbio.2018.03.048 URL |
21. |
Kong, N.; Lin, K.; Li, H.; Chang, J. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J Mater Chem B. 2014, 2, 1100-1110.
doi: 10.1039/C3TB21529F URL |
22. |
De la Fuente, B.; Vázquez, M.; Rocha, R. A.; Devesa, V.; Vélez, D. Effects of sodium fluoride on immune response in murine macrophages. Toxicol In Vitro. 2016, 34, 81-87.
doi: 10.1016/j.tiv.2016.03.001 URL |
23. |
Liu, L.; Liu, Y.; Feng, C.; Chang, J.; Fu, R.; Wu, T.; Yu, F.; Wang, X.; Xia, L.; Wu, C.; Fang, B. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials. 2019, 192, 523-536.
doi: 10.1016/j.biomaterials.2018.11.007 URL |
24. | Shen, J.; Chen, B.; Zhai, X.; Qiao, W.; Wu, S.; Liu, X.; Zhao, Y.; Ruan, C.; Pan, H.; Chu, P. K.; Cheung, K. M. C.; Yeung, K. W. K. Stepwise 3D-spatio-temporal magnesium cationic niche: nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification. Bioact Mater. 2021, 6, 503-519. |
25. |
Bai, L.; Wu, R.; Wang, Y.; Wang, X.; Zhang, X.; Huang, X.; Qin, L.; Hang, R.; Zhao, L.; Tang, B. Osteogenic and angiogenic activities of silicon-incorporated TiO(2) nanotube arrays. J Mater Chem B. 2016, 4, 5548-5559.
doi: 10.1039/C6TB01109H URL |
26. |
Bai, L.; Hang, R.; Gao, A.; Zhang, X.; Huang, X.; Wang, Y.; Tang, B.; Zhao, L.; Chu, P. K. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering. Appl Surf Sci. 2015, 355, 32-44.
doi: 10.1016/j.apsusc.2015.07.064 URL |
27. |
Yan, R.; Li, J.; Wu, Q.; Zhang, X.; Hu, L.; Deng, Y.; Jiang, R.; Wen, J.; Jiang, X. Trace element-augmented titanium implant with targeted angiogenesis and enhanced osseointegration in osteoporotic rats. Front Chem. 2022, 10, 839062.
doi: 10.3389/fchem.2022.839062 URL |
28. |
Qiao, W.; Pan, D.; Zheng, Y.; Wu, S.; Liu, X.; Chen, Z.; Wan, M.; Feng, S.; Cheung, K. M. C.; Yeung, K. W. K.; Cao, X. Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nat Commun. 2022, 13, 535.
doi: 10.1038/s41467-022-28203-0 |
29. |
Bai, L.; Liu, Y.; Du, Z.; Weng, Z.; Yao, W.; Zhang, X.; Huang, X.; Yao, X.; Crawford, R.; Hang, R.; Huang, D.; Tang, B.; Xiao, Y. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018, 76, 344-358.
doi: 10.1016/j.actbio.2018.06.023 URL |
30. |
Bai, L.; Chen, P.; Zhao, Y.; Hang, R.; Yao, X.; Tang, B.; Liu, C.; Xiao, Y.; Hang, R. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials. 2021, 278, 121162.
doi: 10.1016/j.biomaterials.2021.121162 URL |
31. |
Kusumbe, A. P.; Ramasamy, S. K.; Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014, 507, 323-328.
doi: 10.1038/nature13145 |
32. |
Xie, Y.; Hu, C.; Feng, Y.; Li, D.; Ai, T.; Huang, Y.; Chen, X.; Huang, L.; Tan, J. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater. 2020, 7, 233-245.
doi: 10.1093/rb/rbaa006 URL |
33. | Zhong, Z.; Wu, X.; Wang, Y.; Li, M.; Li, Y.; Liu, X.; Zhang, X.; Lan, Z.; Wang, J.; Du, Y.; Zhang, S. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2022, 10, 195-206. |
34. |
Wang, Y.; Wang, J.; Gao, R.; Liu, X.; Feng, Z.; Zhang, C.; Huang, P.; Dong, A.; Kong, D.; Wang, W. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022, 285, 121538.
doi: 10.1016/j.biomaterials.2022.121538 URL |
35. |
Schlundt, C.; Fischer, H.; Bucher, C. H.; Rendenbach, C.; Duda, G. N.; Schmidt-Bleek, K. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Acta Biomater. 2021, 133, 46-57.
doi: 10.1016/j.actbio.2021.04.052 URL |
36. |
Bai, X.; Liu, W.; Xu, L.; Ye, Q.; Zhou, H.; Berg, C.; Yuan, H.; Li, J.; Xia, W. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn-doped porous microcrystalline bioactive glass. J Mater Chem B. 2021, 9, 2885-2898.
doi: 10.1039/D0TB02884C URL |
37. | Lee, J.; Byun, H.; Madhurakkat Perikamana, S. K.; Lee, S.; Shin, H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019, 8, e1801106. |
38. | Wang, Y.; Lin, Q.; Zhang, H.; Wang, S.; Cui, J.; Hu, Y.; Liu, J.; Li, M.; Zhang, K.; Zhou, F.; Jing, Y.; Geng, Z.; Su, J. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator. Bioact Mater. 2023, 28, 273-283. |
39. |
Kushioka, J.; Chow, S. K.; Toya, M.; Tsubosaka, M.; Shen, H.; Gao, Q.; Li, X.; Zhang, N.; Goodman, S. B. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen. 2023, 43, 29.
doi: 10.1186/s41232-023-00279-1 |
40. |
Xiang, X.; Pathak, J. L.; Wu, W.; Li, J.; Huang, W.; Wu, Q.; Xin, M.; Wu, Y.; Huang, Y.; Ge, L.; Zeng, S. Human serum-derived exosomes modulate macrophage inflammation to promote VCAM1-mediated angiogenesis and bone regeneration. J Cell Mol Med. 2023, 27, 1131-1143.
doi: 10.1111/jcmm.v27.8 URL |
41. |
Lv, X.; Gao, F.; Cao, X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 2022, 34, 1914-1931.
doi: 10.1016/j.cmet.2022.09.025 URL |
42. |
Tao, R.; Mi, B.; Hu, Y.; Lin, S.; Xiong, Y.; Lu, X.; Panayi, A. C.; Li, G.; Liu, G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res. 2023, 11, 6.
doi: 10.1038/s41413-022-00240-x |
43. |
Li, L.; Li, A.; Zhu, L.; Gan, L.; Zuo, L. Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway. J Orthop Surg Res. 2022, 17, 286.
doi: 10.1186/s13018-022-03162-w |
44. | Nencini, S.; Ringuet, M.; Kim, D. H.; Chen, Y. J.; Greenhill, C.; Ivanusic, J. J. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol Pain. 2017, 13, 1744806917697011. |
45. |
Lai, Y.; Li, Y.; Cao, H.; Long, J.; Wang, X.; Li, L.; Li, C.; Jia, Q.; Teng, B.; Tang, T.; Peng, J.; Eglin, D.; Alini, M.; Grijpma, D. W.; Richards, G.; Qin, L. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019, 197, 207-219.
doi: 10.1016/j.biomaterials.2019.01.013 URL |
46. |
Yan, Y.; Wang, L.; Ge, L.; Pathak, J. L. Osteocyte-mediated translation of mechanical stimuli to cellular signaling and its role in bone and non-bone-related clinical complications. Curr Osteoporos Rep. 2020, 18, 67-80.
doi: 10.1007/s11914-020-00564-9 |
47. |
Testa, U.; Castelli, G.; Pelosi, E. Role of endothelial progenitor cells in vascular development, homestatic maintenance of blood vessels and in injury-mediated reparative response. Stem Cell Investig. 2020, 7, 7.
doi: 10.21037/sci URL |
48. |
Zhang, Y.; Zhang, Y. Y.; Pan, Z. W.; Li, Q. Q.; Sun, L. H.; Li, X.; Gong, M. Y.; Yang, X. W.; Wang, Y. Y.; Li, H. D.; Xuan, L. N.; Shao, Y. C.; Li, M. M.; Zhang, M. Y.; Yu, Q.; Li, Z.; Zhang, X. F.; Liu, D. H.; Zhu, Y. M.; Tan, Z. Y.; Zhang, Y. Y.; Liu, Y. Q.; Zhang, Y.; Jiao, L.; Yang, B. F. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1α-VEGF/SDF-1α-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol Sin. 2023, 44, 999-1013.
doi: 10.1038/s41401-022-01013-2 |
49. |
Akatsu, Y.; Takahashi, N.; Yoshimatsu, Y.; Kimuro, S.; Muramatsu, T.; Katsura, A.; Maishi, N.; Suzuki, H. I.; Inazawa, J.; Hida, K.; Miyazono, K.; Watabe, T. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol. 2019, 13, 1706-1724.
doi: 10.1002/mol2.v13.8 URL |
50. |
Wang, Y.; Li, J. Current progress in growth factors and extracellular vesicles in tendon healing. Int Wound J. 2023, 20, 3871-3883.
doi: 10.1111/iwj.v20.9 URL |
51. |
Miron, R. J.; Bosshardt, D. D. OsteoMacs: Key players around bone biomaterials. Biomaterials. 2016, 82, 1-19.
doi: 10.1016/j.biomaterials.2015.12.017 URL |
52. | Zhang, Q.; Liu, Y.; Li, J.; Wang, J.; Liu, C. Recapitulation of growth factor-enriched microenvironment via BMP receptor activating hydrogel. Bioact Mater. 2023, 20, 638-650. |
53. |
Rahman, M. S.; Akhtar, N.; Jamil, H. M.; Banik, R. S.; Asaduzzaman, S. M. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015, 3, 15005.
doi: 10.1038/boneres.2015.5 |
54. | Hao, Z.; Ren, L.; Zhang, Z.; Yang, Z.; Wu, S.; Liu, G.; Cheng, B.; Wu, J.; Xia, J. A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis. Bioact Mater. 2023, 23, 206-222. |
55. |
Hu, K.; Shang, Z.; Yang, X.; Zhang, Y.; Cao, L. Macrophage polarization and the regulation of bone immunity in bone homeostasis. J Inflamm Res. 2023, 16, 3563-3580.
doi: 10.2147/JIR.S423819 URL |
56. |
Veis, D. J.; O’Brien, C. A. Osteoclasts, Master Sculptors of Bone. Annu Rev Pathol. 2023, 18, 257-281.
doi: 10.1146/pathmechdis.2023.18.issue-1 URL |
57. |
Yang, N.; Liu, Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021, 18, 3697-3707.
doi: 10.7150/ijms.61080 URL |
58. |
Cao, W.; Helder, M. N.; Bravenboer, N.; Wu, G.; Jin, J.; Ten Bruggenkate, C. M.; Klein-Nulend, J.; Schulten, E. Is there a governing role of osteocytes in bone tissue regeneration? Curr Osteoporos Rep. 2020, 18, 541-550.
doi: 10.1007/s11914-020-00610-6 |
59. |
Chen, Y.; Guan, M.; Ren, R.; Gao, C.; Cheng, H.; Li, Y.; Gao, B.; Wei, Y.; Fu, J.; Sun, J.; Xiong, W. Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO(2) nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy. Int J Nanomedicine. 2020, 15, 2011-2026.
doi: 10.2147/IJN.S242919 URL |
60. |
Routray, I.; Ali, S. Boron induces lymphocyte proliferation and modulates the priming effects of lipopolysaccharide on macrophages. PLoS One. 2016, 11, e0150607.
doi: 10.1371/journal.pone.0150607 URL |
61. |
Lu, X.; Li, K.; Xie, Y.; Qi, S.; Shen, Q.; Yu, J.; Huang, L.; Zheng, X. Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. J Biomed Mater Res A. 2019, 107, 12-24.
doi: 10.1002/jbm.a.v107.1 URL |
62. |
Zhang, J.; Wu, Q.; Yin, C.; Jia, X.; Zhao, Z.; Zhang, X.; Yuan, G.; Hu, H.; Zhao, Q. Sustained calcium ion release from bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction. J Leukoc Biol. 2021, 110, 485-496.
doi: 10.1002/JLB.3MA0321-739R URL |
63. |
Yang, Y.; Ye, Y. C.; Chen, Y.; Zhao, J. L.; Gao, C. C.; Han, H.; Liu, W. C.; Qin, H. Y. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018, 9, 793.
doi: 10.1038/s41419-018-0818-0 |
64. |
Balsano, C.; Porcu, C.; Sideri, S. Is copper a new target to counteract the progression of chronic diseases? Metallomics. 2018, 10, 1712-1722.
doi: 10.1039/C8MT00219C URL |
65. |
Gaetke, L. M.; Chow-Johnson, H. S.; Chow, C. K. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014, 88, 1929-1938.
doi: 10.1007/s00204-014-1355-y URL |
66. |
Wu, P.; Dong, J.; Cheng, N.; Yang, R.; Han, Y.; Han, Y. Inflammatory cytokines expression in Wilson’s disease. Neurol Sci. 2019, 40, 1059-1066.
doi: 10.1007/s10072-018-3680-z |
67. |
Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 2020, 472, 1415-1429.
doi: 10.1007/s00424-020-02412-2 |
68. |
Huang, Q.; Li, X.; Elkhooly, T. A.; Liu, X.; Zhang, R.; Wu, H.; Feng, Q.; Liu, Y. The Cu-containing TiO(2) coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloids Surf B Biointerfaces. 2018, 170, 242-250.
doi: 10.1016/j.colsurfb.2018.06.020 URL |
69. | Wang, L.; Ren, L.; Tang, T.; Dai, K.; Yang, K.; Hao, Y. A novel nano-copper-bearing stainless steel with reduced Cu(2+) release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3. Int J Nanomedicine. 2015, 10, 6725-6739. |
70. |
Wu, S.; Xia, B.; Mai, S.; Feng, Z.; Wang, X.; Liu, Y.; Liu, R.; Li, Z.; Xiao, Y.; Chen, Z.; Chen, Z.Sodium fluoride under dose range of 2.4- 24 μM, a promising osteoimmunomodulatory agent for vascularized bone formation. ACS Biomater Sci Eng. 2019, 5, 817-830.
doi: 10.1021/acsbiomaterials.8b00570 URL |
71. |
Lee, M. J.; Chen, Y.; Huang, Y. P.; Hsu, Y. C.; Chiang, L. H.; Chen, T. Y.; Wang, G. J. Exogenous polyamines promote osteogenic differentiation by reciprocally regulating osteogenic and adipogenic gene expression. J Cell Biochem. 2013, 114, 2718-2728.
doi: 10.1002/jcb.v114.12 URL |
72. |
Lee, M.; Arikawa, K.; Nagahama, F. Micromolar levels of sodium fluoride promote osteoblast differentiation through Runx2 signaling. Biol Trace Elem Res. 2017, 178, 283-291.
doi: 10.1007/s12011-017-0930-5 URL |
73. |
Zhao, P. P.; Ge, Y. W.; Liu, X. L.; Ke, Q. F.; Zhang, J. W.; Zhu, Z. A.; Guo, Y. P. Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chem Eng J. 2020, 381, 122694.
doi: 10.1016/j.cej.2019.122694 URL |
74. |
Seweryn, A.; Alicka, M.; Fal, A.; Kornicka-Garbowska, K.; Lawniczak-Jablonska, K.; Ozga, M.; Kuzmiuk, P.; Godlewski, M.; Marycz, K. Hafnium (IV) oxide obtained by atomic layer deposition (ALD) technology promotes early osteogenesis via activation of Runx2-OPN-mir21A axis while inhibits osteoclasts activity. J Nanobiotechnology. 2020, 18, 132.
doi: 10.1186/s12951-020-00692-5 |
75. |
Bartnikowski, M.; Moon, H. J.; Ivanovski, S. Release of lithium from 3D printed polycaprolactone scaffolds regulates macrophage and osteoclast response. Biomed Mater. 2018, 13, 065003.
doi: 10.1088/1748-605X/aad916 URL |
76. |
Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients. 2021, 13, 1136.
doi: 10.3390/nu13041136 URL |
77. |
Wolf, F. I.; Cittadini, A. Chemistry and biochemistry of magnesium. Mol Aspects Med. 2003, 24, 3-9.
doi: 10.1016/S0098-2997(02)00087-0 URL |
78. |
Nielsen, F. H. Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res. 2018, 11, 25-34.
doi: 10.2147/JIR URL |
79. | Van Orden, R.; Eggett, D. L.; Franz, K. B. Influence of graded magnesium deficiencies on white blood cell counts and lymphocyte subpopulations in rats. Magnes Res. 2006, 19, 93-101. |
80. |
Qiao, W.; Wong, K. H. M.; Shen, J.; Wang, W.; Wu, J.; Li, J.; Lin, Z.; Chen, Z.; Matinlinna, J. P.; Zheng, Y.; Wu, S.; Liu, X.; Lai, K. P.; Chen, Z.; Lam, Y. W.; Cheung, K. M. C.; Yeung, K. W. K. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun. 2021, 12, 2885.
doi: 10.1038/s41467-021-23005-2 |
81. | Chen, Z.; Han, S.; Shi, M.; Liu, G.; Chen, Z.; Chang, J.; Wu, C.; Xiao, Y. Immunomodulatory effects of mesoporous silica nanoparticles on osteogenesis: From nanoimmunotoxicity to nanoimmunotherapy. Appl Mater Today. 2018, 10, 184-193. |
82. |
Huang, Y.; Wu, C.; Zhang, X.; Chang, J.; Dai, K. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater. 2018, 66, 81-92.
doi: 10.1016/j.actbio.2017.08.044 URL |
83. |
Bai, L.; Liu, Y.; Zhang, X.; Huang, X.; Yao, X.; Hang, R.; Tang, B.; Xiao, Y. Favorable manipulation of macrophage/endothelial cell functionality and their cross-talk on silicon-doped titania nanotube arrays. Nanoscale. 2019, 11, 5920-5931.
doi: 10.1039/C8NR08381A URL |
84. | Rithidech, K. N.; Reungpatthanaphong, P.; Tungjai, M.; Jangiam, W.; Honikel, L.; Whorton, E. B. Persistent depletion of plasma gelsolin (pGSN) after exposure of mice to heavy silicon ions. Life Sci Space Res (Amst). 2018, 17, 83-90. |
85. |
Brown, D. M.; Beswick, P. H.; Donaldson, K. Induction of nuclear translocation of NF-kappaB in epithelial cells by respirable mineral fibres. J Pathol. 1999, 189, 258-264.
doi: 10.1002/(ISSN)1096-9896 URL |
86. |
Zhao, D. W.; Liu, C.; Zuo, K. Q.; Su, P.; Li, L. B.; Xiao, G. Y.; Cheng, L. Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chem Eng J. 2021, 408, 127362.
doi: 10.1016/j.cej.2020.127362 URL |
87. | Yu, D.; Guo, S.; Yu, M.; Liu, W.; Li, X.; Chen, D.; Li, B.; Guo, Z.; Han, Y. Immunomodulation and osseointegration activities of Na(2)TiO(3) nanorods-arrayed coatings doped with different Sr content. Bioact Mater. 2022, 10, 323-334. |
88. |
Zhao, D. W.; Zuo, K. Q.; Wang, K.; Sun, Z. Y.; Lu, Y. P.; Cheng, L.; Xiao, G. Y.; Liu, C. Interleukin-4 assisted calcium-strontium-zinc-phosphate coating induces controllable macrophage polarization and promotes osseointegration on titanium implant. Mater Sci Eng C Mater Biol Appl. 2021, 118, 111512.
doi: 10.1016/j.msec.2020.111512 URL |
89. |
Russell, K. C.; Phinney, D. G.; Lacey, M. R.; Barrilleaux, B. L.; Meyertholen, K. E.; O’Connor, K. C. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells. 2010, 28, 788-798.
doi: 10.1002/stem.312 URL |
90. |
Luo, X.; Barbieri, D.; Davison, N.; Yan, Y.; de Bruijn, J. D.; Yuan, H. Zinc in calcium phosphate mediates bone induction: in vitro and in vivo model. Acta Biomater. 2014, 10, 477-485.
doi: 10.1016/j.actbio.2013.10.011 URL |
91. | Xu, Y.; Xu, C.; Yang, K.; Ma, L.; Li, G.; Shi, Y.; Feng, X.; Tan, L.; Duan, D.; Luo, Z.; Yang, C. Copper ion-modified germanium phosphorus nanosheets integrated with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration. Adv Healthc Mater. 2023, 12, e2301151. |
92. | Jing, X.; Xu, C.; Su, W.; Ding, Q.; Ye, B.; Su, Y.; Yu, K.; Zeng, L.; Yang, X.; Qu, Y.; Chen, K.; Sun, T.; Luo, Z.; Guo, X. Photosensitive and conductive hydrogel induced innerved bone regeneration for infected bone defect repair. Adv Healthc Mater. 2023, 12, e2201349. |
93. |
Zhang, Y.; Xu, J.; Ruan, Y. C.; Yu, M. K.; O’Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; Chen, S.; Feng, J. Q.; Chow, D. H.; Xie, X.; Zheng, L.; Huang, L.; Huang, S.; Leung, K.; Lu, N.; Zhao, L.; Li, H.; Zhao, D.; Guo, X.; Chan, K.; Witte, F.; Chan, H. C.; Zheng, Y.; Qin, L. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016, 22, 1160-1169.
doi: 10.1038/nm.4162 |
94. |
Jeanmonod, P.; Laschke, M. W.; Gola, N.; von Heesen, M.; Glanemann, M.; Dold, S.; Menger, M. D.; Moussavian, M. R. Silver acetate coating promotes early vascularization of Dacron vascular grafts without inducing host tissue inflammation. J Vasc Surg. 2013, 58, 1637-1643.
doi: 10.1016/j.jvs.2013.02.012 URL |
95. |
Glenske, K.; Donkiewicz, P.; Köwitsch, A.; Milosevic-Oljaca, N.; Rider, P.; Rofall, S.; Franke, J.; Jung, O.; Smeets, R.; Schnettler, R.; Wenisch, S.; Barbeck, M. Applications of metals for bone regeneration. Int J Mol Sci. 2018, 19, 826.
doi: 10.3390/ijms19030826 URL |
96. |
Kang, K.; Lim, D. H.; Choi, I. H.; Kang, T.; Lee, K.; Moon, E. Y.; Yang, Y.; Lee, M. S.; Lim, J. S. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett. 2011, 205, 227-234.
doi: 10.1016/j.toxlet.2011.05.1033 URL |
97. | Xia, L.; Ma, W.; Zhou, Y.; Gui, Z.; Yao, A.; Wang, D.; Takemura, A.; Uemura, M.; Lin, K.; Xu, Y. Stimulatory effects of boron containing bioactive glass on osteogenesis and angiogenesis of polycaprolactone: in vitro study. Biomed Res Int. 2019, 2019, 8961409. |
98. |
Haro Durand, L. A.; Góngora, A.; Porto López, J. M.; Boccaccini, A. R.; Zago, M. P.; Baldi, A.; Gorustovich, A. In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO(2)-CaO-P(2)O(5)-Na(2)O system. J Mater Chem B. 2014, 2, 7620-7630.
doi: 10.1039/C4TB01043D URL |
99. |
Li, K.; Lu, X.; Liu, S.; Wu, X.; Xie, Y.; Zheng, X. Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res. 2021, 199, 3801-3816.
doi: 10.1007/s12011-020-02517-w |
100. |
Chen, S.; Yang, Q.; Brow, R. K.; Liu, K.; Brow, K. A.; Ma, Y.; Shi, H. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions. Mater Sci Eng C Mater Biol Appl. 2017, 73, 447-455.
doi: 10.1016/j.msec.2016.12.099 URL |
101. |
Jacobs, A.; Renaudin, G.; Forestier, C.; Nedelec, J. M.; Descamps, S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater. 2020, 117, 21-39.
doi: 10.1016/j.actbio.2020.09.044 URL |
102. |
Wang, Y.; Zhang, W.; Yao, Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat. 2021, 29, 60-71.
doi: 10.1016/j.jot.2021.03.003 URL |
103. |
Xiang, J.; Li, J.; He, J.; Tang, X.; Dou, C.; Cao, Z.; Yu, B.; Zhao, C.; Kang, F.; Yang, L.; Dong, S.; Yang, X. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells. ACS Appl Mater Interfaces. 2016, 8, 4489-4499.
doi: 10.1021/acsami.6b00158 URL |
104. |
Zheng, Y.; Yang, Y.; Deng, Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019, 99, 770-782.
doi: 10.1016/j.msec.2019.02.020 URL |
105. |
Fani, N.; Farokhi, M.; Azami, M.; Kamali, A.; Bakhshaiesh, N. L.; Ebrahimi-Barough, S.; Ai, J.; Eslaminejad, M. B. Endothelial and osteoblast differentiation of adipose-derived mesenchymal stem cells using a cobalt-doped cap/silk fibroin scaffold. ACS Biomater Sci Eng. 2019, 5, 2134-2146.
doi: 10.1021/acsbiomaterials.8b01372 URL |
106. |
Delafontaine, P.; Bernstein, K. E.; Alexander, R. W. Insulin-like growth factor I gene expression in vascular cells. Hypertension. 1991, 17, 693-699.
doi: 10.1161/01.HYP.17.5.693 URL |
107. | Shi, H.; Yang, S.; Zeng, S.; Liu, X.; Zhang, J.; Zhang, J.; Wu, T.; Ye, X.; Yu, T.; Zhou, C.; Ye, J. Enhanced angiogenesis of biodegradable iron-doped octacalcium phosphate/poly(lactic-co-glycolic acid) scaffold for potential cancerous bone regeneration. Appl Mater Today. 2019, 15, 100-114. |
108. | Lin, S.; Yang, G.; Jiang, F.; Zhou, M.; Yin, S.; Tang, Y.; Tang, T.; Zhang, Z.; Zhang, W.; Jiang, X. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci (Weinh). 2019, 6, 1900209. |
109. |
Ye, L.; Xu, J.; Mi, J.; He, X.; Pan, Q.; Zheng, L.; Zu, H.; Chen, Z.; Dai, B.; Li, X.; Pang, Q.; Zou, L.; Zhou, L.; Huang, L.; Tong, W.; Li, G.; Qin, L. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials. 2021, 275, 120984.
doi: 10.1016/j.biomaterials.2021.120984 URL |
110. |
Gu, Z.; Xie, H.; Huang, C.; Peng, H.; Tan, H.; Li, L.; Yu, X. Effects of strontium-doped calcium polyphosphate on angiogenic growth factors expression of co-culturing system in vitro and of host cell in vivo. RSC Adv. 2014, 4, 2783-2792.
doi: 10.1039/C3RA44323J URL |
111. |
Zhao, F.; Lei, B.; Li, X.; Mo, Y.; Wang, R.; Chen, D.; Chen, X. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 2018, 178, 36-47.
doi: 10.1016/j.biomaterials.2018.06.004 URL |
112. |
Srinath, P.; Abdul Azeem, P.; Venugopal Reddy, K. Review on calcium silicate-based bioceramics in bone tissue engineering. Int J Appl Ceram Technol. 2020, 17, 2450-2464.
doi: 10.1111/ijac.v17.5 URL |
113. |
Li, H.; Chang, J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater. 2013, 9, 5379-5389.
doi: 10.1016/j.actbio.2012.10.019 URL |
114. |
Zhai, W.; Lu, H.; Chen, L.; Lin, X.; Huang, Y.; Dai, K.; Naoki, K.; Chen, G.; Chang, J. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater. 2012, 8, 341-349.
doi: 10.1016/j.actbio.2011.09.008 URL |
115. |
Mao, L.; Xia, L.; Chang, J.; Liu, J.; Jiang, L.; Wu, C.; Fang, B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater. 2017, 61, 217-232.
doi: 10.1016/j.actbio.2017.08.015 URL |
116. |
Tang, Y. Q.; Wang, Q. Y.; Ke, Q. F.; Zhang, C. Q.; Guan, J. J.; Guo, Y. P. Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chem Eng J. 2020, 387, 124166.
doi: 10.1016/j.cej.2020.124166 URL |
117. | Zhu, D.; Su, Y.; Zheng, Y.; Fu, B.; Tang, L.; Qin, Y. X. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. Am J Physiol Cell Physiol. 2018, 314, C404-C414. |
118. |
Ma, J.; Zhao, N.; Zhu, D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater Sci Eng. 2015, 1, 1174-1182.
doi: 10.1021/acsbiomaterials.5b00319 URL |
119. |
Zhang, J.; Park, Y. D.; Bae, W. J.; El-Fiqi, A.; Shin, S. H.; Lee, E. J.; Kim, H. W.; Kim, E. C. Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. J Biomater Appl. 2015, 29, 954-964.
doi: 10.1177/0885328214550896 URL |
120. |
Hassan, A.; Elebeedy, D.; Matar, E. R.; Fahmy Mohamed Elsayed, A.; Abd El Maksoud, A. I. Investigation of angiogenesis and wound healing potential mechanisms of zinc oxide nanorods. Front Pharmacol. 2021, 12, 661217.
doi: 10.3389/fphar.2021.661217 URL |
121. |
Bosch-Rué, E.; Diez-Tercero, L.; Giordano-Kelhoffer, B.; Delgado, L. M.; Bosch, B. M.; Hoyos-Nogués, M.; Mateos-Timoneda, M. A.; Tran, P. A.; Gil, F. J.; Perez, R. A. Biological roles and delivery strategies for ions to promote osteogenic induction. Front Cell Dev Biol. 2020, 8, 614545.
doi: 10.3389/fcell.2020.614545 URL |
122. |
Santos, C. J.; Ferreira Soares, D. C.; Ferreira, C. A.; de Barros, A. L. B.; Silva Cunha Junior, A. D.; Filho, F. M. Antiangiogenic evaluation of ZnWO(4) nanoparticles synthesised through microwave-assisted hydrothermal method. J Drug Target. 2018, 26, 806-817.
doi: 10.1080/1061186X.2018.1428810 URL |
123. |
Song, Y.; Wu, H.; Gao, Y.; Li, J.; Lin, K.; Liu, B.; Lei, X.; Cheng, P.; Zhang, S.; Wang, Y.; Sun, J.; Bi, L.; Pei, G. Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Appl Mater Interfaces. 2020, 12, 16058-16075.
doi: 10.1021/acsami.0c00470 URL |
124. |
Qing, T.; Mahmood, M.; Zheng, Y.; Biris, A. S.; Shi, L.; Casciano, D. A. A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells. J Appl Toxicol. 2018, 38, 172-179.
doi: 10.1002/jat.v38.2 URL |
125. | Wu, Y.; Cheng, Z.; Hu, W.; Tang, S.; Zhou, X.; Dong, S. Biosynthesized silver nanoparticles inhibit osteoclastogenesis by suppressing NF-κB signaling pathways. Adv Biol (Weinh). 2023, e2300355. |
126. |
Liu, X.; Lee, P. Y.; Ho, C. M.; Lui, V. C.; Chen, Y.; Che, C. M.; Tam, P. K.; Wong, K. K. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010, 5, 468-475.
doi: 10.1002/cmdc.v5:3 URL |
127. |
Nielsen, F. H. The emergence of boron as nutritionally important throughout the life cycle. Nutrition. 2000, 16, 512-514.
doi: 10.1016/S0899-9007(00)00324-5 URL |
128. |
Dessordi, R.; Spirlandeli, A. L.; Zamarioli, A.; Volpon, J. B.; Navarro, A. M. Boron supplementation improves bone health of non-obese diabetic mice. J Trace Elem Med Biol. 2017, 39, 169-175.
doi: 10.1016/j.jtemb.2016.09.011 URL |
129. |
Yin, C.; Jia, X.; Zhao, Q.; Zhao, Z.; Wang, J.; Zhang, Y.; Li, Z.; Sun, H.; Li, Z. Transcription factor 7-like 2 promotes osteogenic differentiation and boron-induced bone repair via lipocalin 2. Mater Sci Eng C Mater Biol Appl. 2020, 110, 110671.
doi: 10.1016/j.msec.2020.110671 URL |
130. |
Li, X.; Wang, X.; Jiang, X.; Yamaguchi, M.; Ito, A.; Bando, Y.; Golberg, D. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2016, 104, 323-329.
doi: 10.1002/jbm.b.v104.2 URL |
131. |
Yin, C.; Jia, X.; Miron, R. J.; Long, Q.; Xu, H.; Wei, Y.; Wu, M.; Zhang, Y.; Li, Z. Setd7 and its contribution to Boron-induced bone regeneration in Boron-mesoporous bioactive glass scaffolds. Acta Biomater. 2018, 73, 522-530.
doi: 10.1016/j.actbio.2018.04.033 URL |
132. |
Ying, D.; Ouyang, Z.; Liu, T.; Liu, X.; Huang, Q. Boron-containing micro/nano-structured TiO2/bioceramics coatings with modulatory effects on SaOS-2 cell response. Mater Lett. 2018, 228, 29-32.
doi: 10.1016/j.matlet.2018.05.122 URL |
133. |
Cai, B.; Tan, P.; Jiang, N.; Guo, Z.; Ay, B.; Li, S.; Hou, Y.; Li, Y.; You, Y.; Zhang, L.; Zhu, S. Bioinspired fabrication of calcium-doped TiP coating with nanofibrous microstructure to accelerate osseointegration. Bioconjug Chem. 2020, 31, 1641-1650.
doi: 10.1021/acs.bioconjchem.0c00201 URL |
134. | Peacock, M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010, 5 Suppl 1, S23-30. |
135. |
Foreman, M. A.; Gu, Y.; Howl, J. D.; Jones, S.; Publicover, S. J. Group III metabotropic glutamate receptor activation inhibits Ca2+ influx and nitric oxide synthase activity in bone marrow stromal cells. J Cell Physiol. 2005, 204, 704-713.
doi: 10.1002/jcp.v204:2 URL |
136. |
Riddle, R. C.; Taylor, A. F.; Genetos, D. C.; Donahue, H. J. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol. 2006, 290, C776-784.
doi: 10.1152/ajpcell.00082.2005 URL |
137. |
Liu, D.; Genetos, D. C.; Shao, Y.; Geist, D. J.; Li, J.; Ke, H. Z.; Turner, C. H.; Duncan, R. L. Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone. 2008, 42, 644-652.
doi: 10.1016/j.bone.2007.09.058 URL |
138. |
Danciu, T. E.; Adam, R. M.; Naruse, K.; Freeman, M. R.; Hauschka, P. V. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett. 2003, 536, 193-197.
doi: 10.1016/S0014-5793(03)00055-3 URL |
139. | Lee, M. N.; Hwang, H. S.; Oh, S. H.; Roshanzadeh, A.; Kim, J. W.; Song, J. H.; Kim, E. S.; Koh, J. T. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med. 2018, 50, 1-16. |
140. |
Gaharwar, A. K.; Mihaila, S. M.; Swami, A.; Patel, A.; Sant, S.; Reis, R. L.; Marques, A. P.; Gomes, M. E.; Khademhosseini, A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013, 25, 3329-3336.
doi: 10.1002/adma.v25.24 URL |
141. |
Westhauser, F.; Rehder, F.; Decker, S.; Kunisch, E.; Moghaddam, A.; Zheng, K.; Boccaccini, A. R. Ionic dissolution products of Cerium-doped bioactive glass nanoparticles promote cellular osteogenic differentiation and extracellular matrix formation of human bone marrow derived mesenchymal stromal cells. Biomed Mater. 2021, 16, 035028.
doi: 10.1088/1748-605X/abcf5f |
142. |
Hsu, S. H.; Chen, C. T.; Wei, Y. H. Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 2013, 31, 2779-2788.
doi: 10.1002/stem.1441 URL |
143. |
Yoo, H. I.; Moon, Y. H.; Kim, M. S. Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. Korean J Physiol Pharmacol. 2016, 20, 53-62.
doi: 10.4196/kjpp.2016.20.1.53 URL |
144. |
Burghardt, I.; Lüthen, F.; Prinz, C.; Kreikemeyer, B.; Zietz, C.; Neumann, H. G.; Rychly, J. A dual function of copper in designing regenerative implants. Biomaterials. 2015, 44, 36-44.
doi: 10.1016/j.biomaterials.2014.12.022 URL |
145. |
Lin, Z.; Cao, Y.; Zou, J.; Zhu, F.; Gao, Y.; Zheng, X.; Wang, H.; Zhang, T.; Wu, T. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Mater Sci Eng C Mater Biol Appl. 2020, 114, 111032.
doi: 10.1016/j.msec.2020.111032 URL |
146. |
Zhang, J.; Wu, H.; He, F.; Wu, T.; Zhou, L.; Ye, J. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions. Mater Sci Eng C Mater Biol Appl. 2019, 99, 1199-1212.
doi: 10.1016/j.msec.2019.02.042 URL |
147. |
Chen, M.; Wang, X. Q.; Zhang, E. L.; Wan, Y. Z.; Hu, J. Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification. Rare Met. 2022, 41, 689-699.
doi: 10.1007/s12598-021-01808-y |
148. |
Chen, L.; Song, W.; Markel, D. C.; Shi, T.; Muzik, O.; Matthew, H.; Ren, W. Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes. J Biomater Appl. 2016, 30, 908-918.
doi: 10.1177/0885328215608335 URL |
149. |
Qu, W. J.; Zhong, D. B.; Wu, P. F.; Wang, J. F.; Han, B. Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab. 2008, 26, 328-334.
doi: 10.1007/s00774-007-0832-2 URL |
150. |
Pan, X.; Huang, J.; Zhang, K.; Pei, Z.; Ding, Z.; Liang, Y.; Gu, Z.; Li, G.; Xie, H. Iron-doped brushite bone cement scaffold with enhanced osteoconductivity and antimicrobial properties for jaw regeneration. Ceram Int. 2021, 47, 25810-25820.
doi: 10.1016/j.ceramint.2021.05.309 URL |
151. | Strazic Geljic, I.; Melis, N.; Boukhechba, F.; Schaub, S.; Mellier, C.; Janvier, P.; Laugier, J. P.; Bouler, J. M.; Verron, E.; Scimeca, J. C. Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. J Tissue Eng Regen Med. 2018, 12, e854-e866. |
152. |
Liao, F.; Peng, X. Y.; Yang, F.; Ke, Q. F.; Zhu, Z. H.; Guo, Y. P. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Mater Sci Eng C Mater Biol Appl. 2019, 104, 109999.
doi: 10.1016/j.msec.2019.109999 URL |
153. |
Zhao, P. P.; Hu, H. R.; Liu, J. Y.; Ke, Q. F.; Peng, X. Y.; Ding, H.; Guo, Y. P. Gadolinium phosphate/chitosan scaffolds promote new bone regeneration via Smad/Runx2 pathway. Chem Eng J. 2019, 359, 1120-1129.
doi: 10.1016/j.cej.2018.11.071 URL |
154. |
Zhu, D. Y.; Lu, B.; Yin, J. H.; Ke, Q. F.; Xu, H.; Zhang, C. Q.; Guo, Y. P.; Gao, Y. S. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Int J Nanomedicine. 2019, 14, 1085-1100.
doi: 10.2147/IJN URL |
155. |
Chu, M.; Sun, Z.; Fan, Z.; Yu, D.; Mao, Y.; Guo, Y. Bi-directional regulation functions of lanthanum-substituted layered double hydroxide nanohybrid scaffolds via activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration. Theranostics. 2021, 11, 6717-6734.
doi: 10.7150/thno.56607 URL |
156. |
Cheng, H.; Guo, Q.; Zhao, H.; Liu, K.; Kang, H.; Gao, F.; Guo, J.; Yuan, X.; Hu, S.; Li, F.; Yang, Q.; Fang, Z. An injectable hydrogel scaffold loaded with dual-drug/sustained-release PLGA microspheres for the regulation of macrophage polarization in the treatment of intervertebral disc degeneration. Int J Mol Sci. 2022, 24, 390.
doi: 10.3390/ijms24010390 URL |
157. |
Zhang, J.; Cai, L.; Tang, L.; Zhang, X.; Yang, L.; Zheng, K.; He, A.; Boccaccini, A. R.; Wei, J.; Zhao, J. Highly dispersed lithium doped mesoporous silica nanospheres regulating adhesion, proliferation, morphology, ALP activity and osteogenesis related gene expressions of BMSCs. Colloids Surf B Biointerfaces. 2018, 170, 563-571.
doi: 10.1016/j.colsurfb.2018.06.038 URL |
158. |
Mo, F.; Jiang, K.; Zhao, D.; Wang, Y.; Song, J.; Tan, W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev. 2021, 168, 79-98.
doi: 10.1016/j.addr.2020.07.018 URL |
159. | Tan, Z.; Zhou, B.; Zheng, J.; Huang, Y.; Zeng, H.; Xue, L.; Wang, D. Lithium and copper induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells via crosstalk between canonical Wnt and HIF-1α signaling pathways. Stem Cells Int. 2021, 2021, 6662164. |
160. |
Huang, T. B.; Li, Y. Z.; Yu, K.; Yu, Z.; Wang, Y.; Jiang, Z. W.; Wang, H. M.; Yang, G. L. Effect of the Wnt signal-RANKL/OPG axis on the enhanced osteogenic integration of a lithium incorporated surface. Biomater Sci. 2019, 7, 1101-1116.
doi: 10.1039/C8BM01411F URL |
161. |
Wang, J.; Ma, X. Y.; Feng, Y. F.; Ma, Z. S.; Ma, T. C.; Zhang, Y.; Li, X.; Wang, L.; Lei, W. Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res. 2017, 179, 284-293.
doi: 10.1007/s12011-017-0948-8 URL |
162. |
Pantulap, U.; Arango-Ospina, M.; Boccaccini, A. R. Bioactive glasses incorporating less-common ions to improve biological and physical properties. J Mater Sci Mater Med. 2021, 33, 3.
doi: 10.1007/s10856-021-06626-3 |
163. |
Barrioni, B. R.; Norris, E.; Li, S.; Naruphontjirakul, P.; Jones, J. R.; Pereira, M. M. Osteogenic potential of sol-gel bioactive glasses containing manganese. J Mater Sci Mater Med. 2019, 30, 86.
doi: 10.1007/s10856-019-6288-9 |
164. |
Wu, T.; Shi, H.; Liang, Y.; Lu, T.; Lin, Z.; Ye, J. Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate. Mater Sci Eng C Mater Biol Appl. 2020, 109, 110481.
doi: 10.1016/j.msec.2019.110481 URL |
165. |
Su, Y.; Chen, L. J.; He, J. R.; Yuan, X. J.; Cen, Y. L.; Su, F. X.; Tang, L. Y.; Zhang, A. H.; Chen, W. Q.; Lin, Y.; Wang, S. M.; Ren, Z. F. Urinary rubidium in breast cancers. Clin Chim Acta. 2011, 412, 2305-2309.
doi: 10.1016/j.cca.2011.08.035 URL |
166. |
Ouyang, S.; Zheng, K.; Huang, Q.; Liu, Y.; Boccaccini, A. R. Synthesis and characterization of rubidium-containing bioactive glass nanoparticles. Mater Lett. 2020, 273, 127920.
doi: 10.1016/j.matlet.2020.127920 URL |
167. |
Chen, M.; Wu, S.; Tan, Y.; Li, R.; Liu, Y.; Huang, Q. Rubidium-doped titanium surfaces with modulatory effects on MC3T3-E1 cell response and antibacterial capacity against Staphylococcus aureus. Biomed Mater. 2019, 14, 045016.
doi: 10.1088/1748-605X/ab2585 URL |
168. |
Tan, Y. N.; Chen, W. J.; Wei, W.; Huang, Q. L.; He, X. Rubidium-modified bioactive glass-ceramics with hydroxyapatite crystals for bone regeneration. Trans Nonferrous Met Soc China. 2021, 31, 521-532.
doi: 10.1016/S1003-6326(21)65514-0 URL |
169. |
Ren, N.; Yu, X.; Wang, A.; Liang, N.; Feng, Z.; Sun, C. Effects of scandium chloride on osteogenic and adipogenic differentiation of mesenchymal stem cells. J Rare Earths. 2022, 40, 161-168.
doi: 10.1016/j.jre.2020.11.007 URL |
170. |
Millucci, L.; Minetti, M.; Orlandini, M.; Braconi, D.; Schiavone, M. L.; Galderisi, S.; Marzocchi, B.; Spiga, O.; Rappuoli, R.; Spreafico, A.; Perretti, G.; Bernardini, G.; Santucci, A. Beer promotes differentiation and mineralization of human osteoblastic cells: Role of silicon. J Funct Foods. 2019, 54, 109-118.
doi: 10.1016/j.jff.2019.01.023 URL |
171. |
Reffitt, D. M.; Ogston, N.; Jugdaohsingh, R.; Cheung, H. F.; Evans, B. A.; Thompson, R. P.; Powell, J. J.; Hampson, G. N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003, 32, 127-135.
doi: 10.1016/S8756-3282(02)00950-X URL |
172. |
Dong, M.; Jiao, G.; Liu, H.; Wu, W.; Li, S.; Wang, Q.; Xu, D.; Li, X.; Liu, H.; Chen, Y. Biological silicon stimulates collagen type 1 and osteocalcin synthesis in human osteoblast-like cells through the BMP-2/Smad/RUNX2 signaling pathway. Biol Trace Elem Res. 2016, 173, 306-315.
doi: 10.1007/s12011-016-0686-3 URL |
173. |
Zhou, H.; Jiao, G.; Dong, M.; Chi, H.; Wang, H.; Wu, W.; Liu, H.; Ren, S.; Kong, M.; Li, C.; Zhang, L.; Chen, Y. Orthosilicic acid accelerates bone formation in human osteoblast-like cells through the PI3K-Akt-mTOR pathway. Biol Trace Elem Res. 2019, 190, 327-335.
doi: 10.1007/s12011-018-1574-9 |
174. |
Zhou, X.; Moussa, F. M.; Mankoci, S.; Ustriyana, P.; Zhang, N.; Abdelmagid, S.; Molenda, J.; Murphy, W. L.; Safadi, F. F.; Sahai, N. Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation. Acta Biomater. 2016, 39, 192-202.
doi: 10.1016/j.actbio.2016.05.007 URL |
175. |
Ma, W.; Wang, F.; You, Y.; Wu, W.; Chi, H.; Jiao, G.; Zhang, L.; Zhou, H.; Wang, H.; Chen, Y. Ortho-silicic acid inhibits RANKL-induced osteoclastogenesis and reverses ovariectomy-induced bone loss in vivo. Biol Trace Elem Res. 2021, 199, 1864-1876.
doi: 10.1007/s12011-020-02286-6 |
176. |
You, Y.; Ma, W.; Wang, F.; Jiao, G.; Zhang, L.; Zhou, H.; Wu, W.; Wang, H.; Chen, Y. Ortho-silicic acid enhances osteogenesis of osteoblasts through the upregulation of miR-130b which directly targets PTEN. Life Sci. 2021, 264, 118680.
doi: 10.1016/j.lfs.2020.118680 URL |
177. |
Liangjiao, C.; Ping, Z.; Ruoyu, L.; Yanli, Z.; Ting, S.; Yanjun, L.; Longquan, S. Potential proinflammatory and osteogenic effects of dicalcium silicate particles in vitro. J Mech Behav Biomed Mater. 2015, 44, 10-22.
doi: 10.1016/j.jmbbm.2014.12.012 URL |
178. | Geng, Z.; Sang, S.; Wang, S.; Meng, F.; Li, Z.; Zhu, S.; Cui, Z.; Jing, Y.; Wang, C.; Su, J. Optimizing the strontium content to achieve an ideal osseointegration through balancing apatite-forming ability and osteogenic activity. Biomater Adv. 2022, 133, 112647. |
179. |
Li, Y.; Yue, J.; Liu, Y.; Wu, J.; Guan, M.; Chen, D.; Pan, H.; Zhao, X.; Lu, W. W. Strontium regulates stem cell fate during osteogenic differentiation through asymmetric cell division. Acta Biomater. 2021, 119, 432-443.
doi: 10.1016/j.actbio.2020.10.030 URL |
180. |
Stefanic, M.; Peroglio, M.; Stanciuc, A. M.; Machado, G. C.; Campbell, I.; Kržmanc, M. M.; Alini, M.; Zhang, X. The influence of strontium release rate from bioactive phosphate glasses on osteogenic differentiation of human mesenchymal stem cells. J Eur Ceram Soc. 2018, 38, 887-897.
doi: 10.1016/j.jeurceramsoc.2017.08.005 URL |
181. |
Montagna, G.; Cristofaro, F.; Fassina, L.; Bruni, G.; Cucca, L.; Kochen, A.; Divieti Pajevic, P.; Bragdon, B.; Visai, L.; Gerstenfeld, L. An in vivo comparison study between strontium nanoparticles and rhBMP2. Front Bioeng Biotechnol. 2020, 8, 499.
doi: 10.3389/fbioe.2020.00499 URL |
182. |
Huang, D.; Zhao, F.; Gao, W.; Chen, X.; Guo, Z.; Zhang, W. Strontium-substituted sub-micron bioactive glasses inhibit ostoclastogenesis through suppression of RANKL-induced signaling pathway. Regen Biomater. 2020, 7, 303-311.
doi: 10.1093/rb/rbaa004 URL |
183. |
Barrio, D. A.; Etcheverry, S. B. Vanadium and bone development: putative signaling pathways. Can J Physiol Pharmacol. 2006, 84, 677-686.
doi: 10.1139/y06-022 URL |
184. |
Cortizo, A. M.; Molinuevo, M. S.; Barrio, D. A.; Bruzzone, L. Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol. 2006, 38, 1171-1180.
doi: 10.1016/j.biocel.2005.12.007 URL |
185. |
Jin, G.; Cao, H.; Qiao, Y.; Meng, F.; Zhu, H.; Liu, X. Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf B Biointerfaces. 2014, 117, 158-165.
doi: 10.1016/j.colsurfb.2014.02.025 URL |
186. |
Kwun, I. S.; Cho, Y. E.; Lomeda, R. A.; Shin, H. I.; Choi, J. Y.; Kang, Y. H.; Beattie, J. H. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010, 46, 732-741.
doi: 10.1016/j.bone.2009.11.003 URL |
187. |
Moonga, B. S.; Dempster, D. W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995, 10, 453-457.
doi: 10.1002/jbmr.v10:3 URL |
188. |
Guo, B.; Yang, M.; Liang, D.; Yang, L.; Cao, J.; Zhang, L. Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem. 2012, 361, 209-216.
doi: 10.1007/s11010-011-1105-x URL |
189. |
Hadley, K. B.; Newman, S. M.; Hunt, J. R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem. 2010, 21, 297-303.
doi: 10.1016/j.jnutbio.2009.01.002 URL |
190. |
O’Connor, J. P.; Kanjilal, D.; Teitelbaum, M.; Lin, S. S.; Cottrell, J. A. Zinc as a therapeutic agent in bone regeneration. Materials (Basel). 2020, 13, 2211.
doi: 10.3390/ma13102211 URL |
191. |
Hu, G.; Zhu, Y.; Xu, F.; Ye, J.; Guan, J.; Jiang, Y.; Di, M.; Li, Z.; Guan, H.; Yao, X. Comparison of surface properties, cell behaviors, bone regeneration and osseointegration between nano tantalum/PEEK composite and nano silicon nitride/PEEK composite. J Biomater Sci Polym Ed. 2022, 33, 35-56.
doi: 10.1080/09205063.2021.1974812 URL |
192. |
Hwang, C.; Park, S.; Kang, I. G.; Kim, H. E.; Han, C. M. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020, 115, 111112.
doi: 10.1016/j.msec.2020.111112 URL |
193. |
Zhou, Z.; Liu, D. Mesenchymal stem cell-seeded porous tantalum-based biomaterial: a promising choice for promoting bone regeneration. Colloids Surf B Biointerfaces. 2022, 215, 112491.
doi: 10.1016/j.colsurfb.2022.112491 URL |
194. |
Mas-Moruno, C.; Garrido, B.; Rodriguez, D.; Ruperez, E.; Gil, F. J. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. J Mater Sci Mater Med. 2015, 26, 109.
doi: 10.1007/s10856-015-5445-z URL |
195. |
Shi, L. Y.; Wang, A.; Zang, F. Z.; Wang, J. X.; Pan, X. W.; Chen, H. J. Tantalum-coated pedicle screws enhance implant integration. Colloids Surf B Biointerfaces. 2017, 160, 22-32.
doi: 10.1016/j.colsurfb.2017.08.059 URL |
196. |
Qing, Y.; Li, R.; Li, S.; Li, Y.; Wang, X.; Qin, Y. Advanced black phosphorus nanomaterials for bone regeneration. Int J Nanomedicine. 2020, 15, 2045-2058.
doi: 10.2147/IJN.S246336 URL |
197. |
Kim, H. D.; Jang, H. L.; Ahn, H. Y.; Lee, H. K.; Park, J.; Lee, E. S.; Lee, E. A.; Jeong, Y. H.; Kim, D. G.; Nam, K. T.; Hwang, N. S. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials. 2017, 112, 31-43.
doi: 10.1016/j.biomaterials.2016.10.009 URL |
198. |
Eckart, R. E.; Shry, E. A.; Burke, A. P.; McNear, J. A.; Appel, D. A.; Castillo-Rojas, L. M.; Avedissian, L.; Pearse, L. A.; Potter, R. N.; Tremaine, L.; Gentlesk, P. J.; Huffer, L.; Reich, S. S.; Stevenson, W. G.; Department of Defense Cardiovascular Death Registry Group. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol. 2011, 58, 1254-1261.
doi: 10.1016/j.jacc.2011.01.049 URL |
199. |
Goretti Penido, M.; Alon, U. S. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012, 27, 2039-2048.
doi: 10.1007/s00467-012-2175-z URL |
200. |
Liu, X.; Miller, A. L., 2nd; Park, S.; George, M. N.; Waletzki, B. E.; Xu, H.; Terzic, A.; Lu, L. Two-dimensional black phosphorus and graphene oxide nanosheets synergistically enhance cell proliferation and osteogenesis on 3D printed scaffolds. ACS Appl Mater Interfaces. 2019, 11, 23558-23572.
doi: 10.1021/acsami.9b04121 URL |
201. |
Avgoulas, E. I.; Sutcliffe, M. P. F.; Linderman, S. W.; Birman, V.; Thomopoulos, S.; Genin, G. M. Adhesive-based tendon-to-bone repair: failure modelling and materials selection. J R Soc Interface. 2019, 16, 20180838.
doi: 10.1098/rsif.2018.0838 URL |
[1] | Jin Yang, Kanwal Fatima, Xiaojun Zhou, Chuanglong He. Meticulously engineered three-dimensional-printed scaffold with microarchitecture and controlled peptide release for enhanced bone regeneration [J]. Biomaterials Translational, 2024, 5(1): 69-83. |
[2] | Yunke Jiao, Miao Lei, Jianwei Zhu, Ronghang Chang, Xue Qu. Advances in electrode interface materials and modification technologies for brain-computer interfaces [J]. Biomaterials Translational, 2023, 4(4): 213-233. |
[3] | Qiao Sun, Yicun Li, Ping Luo, Hong He. Animal models for testing biomaterials in periodontal regeneration [J]. Biomaterials Translational, 2023, 4(3): 142-150. |
[4] | Andrew Tai, Euphemie Landao-Bassonga, Ziming Chen, Minh Tran, Brent Allan, Rui Ruan, Dax Calder, Mithran Goonewardene, Hien Ngo, Ming Hao Zheng. Systematic evaluation of three porcine-derived collagen membranes for guided bone regeneration [J]. Biomaterials Translational, 2023, 4(1): 41-50. |
[5] | Jingyu Fan, Elizabeth Pung, Yuan Lin, Qian Wang. Recent development of hydrogen sulfide-releasing biomaterials as novel therapies:a narrative review [J]. Biomaterials Translational, 2022, 3(4): 250-263. |
[6] | Yiqiang Hu, Yuan Xiong, Ranyang Tao, Hang Xue, Lang Chen, Ze Lin, Adriana C. Panayi, Bobin Mi, Guohui Liu. Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing [J]. Biomaterials Translational, 2022, 3(3): 188-200. |
[7] | Shuqin Cao, Quan Yuan. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review [J]. Biomaterials Translational, 2022, 3(1): 55-64. |
[8] | Emma Steijvers, Armaan Ghei, Zhidao Xia. Manufacturing artificial bone allografts: a perspective [J]. Biomaterials Translational, 2022, 3(1): 65-80. |
[9] | Ke Hu, Yuxuan Li, Zunxiang Ke, Hongjun Yang, Chanjun Lu, Yiqing Li, Yi Guo, Weici Wang. History, progress and future challenges of artificial blood vessels: a narrative review [J]. Biomaterials Translational, 2022, 3(1): 81-98. |
[10] | Yizhong Peng, Jinye Li, Hui Lin, Shuo Tian, Sheng Liu, Feifei Pu, Lei Zhao, Kaige Ma, Xiangcheng Qing, Zengwu Shao. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review [J]. Biomaterials Translational, 2021, 2(4): 343-360. |
[11] | Xirui Jing, Qiuyue Ding, Qinxue Wu, Weijie Su, Keda Yu, Yanlin Su, Bing Ye, Qing Gao, Tingfang Sun, Xiaodong Guo. Magnesium-based materials in orthopaedics: material properties and animal models [J]. Biomaterials Translational, 2021, 2(3): 197-213. |
[12] | Kamolrat Metavarayuth, Esteban Villarreal, Hui Wang, Qian Wang. Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles [J]. Biomaterials Translational, 2021, 2(2): 165-173. |
[13] | Yizhong Peng, Xiangcheng Qing, Hongyang Shu, Shuo Tian, Wenbo Yang, Songfeng Chen, Hui Lin, Xiao Lv, Lei Zhao, Xi Chen, Feifei Pu, Donghua Huang, Xu Cao, Zengwu Shao. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration [J]. Biomaterials Translational, 2021, 2(2): 91-142. |
[14] | Pingli Wu, Yangyang Liang, Guoming Sun. Engineering immune-responsive biomaterials for skin regeneration [J]. Biomaterials Translational, 2021, 2(1): 61-71. |
[15] | Isak Jatoi, Jingyu Fan. A biomaterials viewpoint for the 2020 SARS-CoV-2 vaccine development [J]. Biomaterials Translational, 2021, 2(1): 30-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||